149 research outputs found

    Molecular simulations of the synthesis of periodic mesoporous silica phases at high surfactant concentrations

    Get PDF
    Molecular dynamics simulations of a coarse-grained model are used to study the formation mechanism of periodic mesoporous silica over a wide range of cationic surfactant concentrations. This follows up on an earlier study of systems with low surfactant concentrations. We started by studying the phase diagram of the surfactant-water system and found that our model shows good qualitative agreement with experiments with respect to the surfactant concentrations where various phases appear. We then considered the impact of silicate species upon the morphologies formed. We have found that even in concentrated surfactant systems --in the concentration range where pure surfactant solutions yield a liquid crystal phase -- the liquid-crystal templating mechanism is not viable because the preformed liquid crystal collapses as silica monomers are added into the solution. Upon the addition of silica dimers, a new phase-separated hexagonal array is formed. The preformed liquid crystals were found to be unstable in the presence of monomeric silicates. In addition, the silica dimer is found to be essential for mesoscale ordering at both low and high surfactant concentrations. Our results support the view that a cooperative interaction of anionic silica oligomers and cationic surfactants determines the mesostructure formation in the M41S family of materials.publishe

    Ginsenoside-Rg1 Protects the Liver against Exhaustive Exercise-Induced Oxidative Stress in Rats

    Get PDF
    Despite regular exercise benefits, acute exhaustive exercise elicits oxidative damage in liver. The present study determined the hepatoprotective properties of ginsenoside-Rg1 against exhaustive exercise-induced oxidative stress in rats. Forty rats were assigned into vehicle and ginsenoside-Rg1 groups (0.1 mg/kg bodyweight). After 10-week treatment, ten rats from each group performed exhaustive swimming. Estimated oxidative damage markers, including thiobarbituric acid reactive substance (TBARS) (67%) and protein carbonyls (56%), were significantly (P < 0.01) elevated after exhaustive exercise but alleviated in ginsenoside-Rg1 pretreated rats. Furthermore, exhaustive exercise drastically decreased glutathione (GSH) content (∼79%) with concurrent decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities. However, these changes were attenuated in Rg1 group. Additionally, increased xanthine oxidase (XO) activity and nitric oxide (NO) levels after exercise were also inhibited by Rg1 pretreatment. For the first time, our findings provide strong evidence that ginsenoside-Rg1 can protect the liver against exhaustive exercise-induced oxidative damage

    Multiscale model for the templated synthesis of mesoporous silica: the essential role of silica oligomers

    Get PDF
    A detailed theoretical understanding of the synthesis mechanism of periodic mesoporous silica has not yet been achieved. We present results of a multiscale simulation strategy that, for the first time, describes the molecular-level processes behind the formation of silica/surfactant mesophases in the synthesis of templated MCM-41 materials. The parameters of a new coarse-grained explicit-solvent model for the synthesis solution are calibrated with reference to a detailed atomistic model, which itself is based on quantum mechanical calculations. This approach allows us to reach the necessary time and length scales to explicitly simulate the spontaneous formation of mesophase structures while maintaining a level of realism that allows for direct comparison with experimental systems. Our model shows that silica oligomers are a necessary component in the formation of hexagonal liquid crystals from low-concentration surfactant solutions. Because they are multiply charged, silica oligomers are able to bridge adjacent micelles, thus allowing them to overcome their mutual repulsion and form aggregates. This leads the system to phase separate into a dilute solution and a silica/surfactant-rich mesophase, which leads to MCM-41 formation. Before extensive silica condensation takes place, the mesophase structure can be controlled by manipulation of the synthesis conditions. Our modeling results are in close agreement with experimental observations and strongly support a cooperative mechanism for synthesis of this class of materials. This work paves the way for tailored design of nanoporous materials using computational models

    Oral Rg1 supplementation strengthens antioxidant defense system against exercise-induced oxidative stress in rat skeletal muscles

    Get PDF
    BACKGROUND: Previous studies reported divergent results on nutraceutical actions and free radical scavenging capability of ginseng extracts. Variations in ginsenoside profile of ginseng due to different soil and cultivating season may contribute to the inconsistency. To circumvent this drawback, we assessed the effect of major ginsenoside-Rg1 (Rg1) on skeletal muscle antioxidant defense system against exhaustive exercise-induced oxidative stress. METHODS: Forty weight-matched rats were evenly divided into control (N = 20) and Rg1 (N = 20) groups. Rg1 was orally administered at the dose of 0.1 mg/kg bodyweight per day for 10-week. After this long-term Rg1 administration, ten rats from each group performed an exhaustive swimming, and remaining rats considered as non-exercise control. Tibialis anterior (TA) muscles were surgically collected immediately after exercise along with non-exercise rats. RESULTS: Exhaustive exercise significantly (p<0.05) increased the lipid peroxidation of control group, as evidenced by elevated malondialdehyde (MDA) levels. The increased oxidative stress after exercise was also confirmed by decreased reduced glutathione to oxidized glutathione ratio (GSH/GSSG ratio) in control rats. However, these changes were completely eliminated in Rg1 group. Catalase (CAT) and glutathione peroxidase (GPx) activities were significantly (p<0.05) increased by Rg1 in non-exercise rats, while no significant change after exercise. Nevertheless, glutathione reductase (GR) and glutathione S-transferase (GST) activities were significantly increased after exercise in Rg1 group. CONCLUSIONS: This study provide compelling evidences that Rg1 supplementation can strengthen antioxidant defense system in skeletal muscle and completely attenuate the membrane lipid peroxidation induced by exhaustive exercise. Our findings suggest that Rg1 can use as a nutraceutical supplement to buffer the exhaustive exercise-induced oxidative stress
    corecore