82 research outputs found
A kinetic study of mercury(II) transport through a membrane assisted by new transport reagent
Background: A new organodithiophosphorus derivative, namely O-(1,3-Bispiperidino-2-propyl)-4-methoxy phenyldithiophosphonate, was synthesized and then the kinetic behavior of the transport process as a function of concentration, temperature, stirring rate and solvents was investigated.Results: The compound 1 was characterized by elemental analysis, IR, H-1 and P-31 NMR spectroscopies. The transport of mercury(II) ion by a zwitterionic dithiophosphonate 1 in the liquid membrane was studied and the kinetic behavior of the transport process as a function of concentration, temperature, stirring rate and solvents was investigated. The compound 1 is expected to serve as a model liquid membrane transport with mercury(II) ions.Conclusion: A kinetic study of mercury(II) transport through a membrane assisted by O-(1,3-Bispiperidino-2-propyl)4-methoxy phenyldithiophosphonate was performed. It can be concluded that the compound 1 can be provided a general and straightforward route to remove toxic metals ions such as mercury(II) ion from water or other solution
Effect of base–acid properties of the mixtures of water with methanol on the solution enthalpy of selected cyclic ethers in this mixture at 298.15 K
The enthalpies of solution of cyclic ethers: 1,4-
dioxane, 12-crown-4 and 18-crown-6 in the mixture of
water and methanol have been measured within the whole
mole fraction range at T = 298.15 K. Based on the obtained
data, the effect of base–acid properties of water–
methanol mixtures on the solution enthalpy of cyclic ethers
in these mixtures has been analyzed. The solution enthalpy
of cyclic ethers depends on acid properties of water–
methanol mixtures in the range of high and medium water
contents in the mixture. Based on the analysis performed, it
can be assumed that in the mixtures of high methanol
contents, cyclic ethe
Chemokine CXCL4 interactions with extracellular matrix proteoglycans mediate widespread immune cell recruitment independent of chemokine receptors
Leukocyte recruitment from the vasculature into tissues is a crucial component of the immune system but is also key to inflammatory disease. Chemokines are central to this process but have yet to be therapeutically targeted during inflammation due to a lack of mechanistic understanding. Specifically, CXCL4 (Platelet Factor 4, PF4) has no established receptor that explains its function. Here, we use biophysical, in vitro, and in vivo techniques to determine the mechanism underlying CXCL4-mediated leukocyte recruitment. We demonstrate that CXCL4 binds to glycosaminoglycan (GAG) sugars on proteoglycans within the endothelial extracellular matrix, resulting in increased adhesion of leukocytes to the vasculature, increased vascular permeability, and non-specific recruitment of a range of leukocytes. Furthermore, GAG sulfation confers selectivity onto chemokine localization. These findings present mechanistic insights into chemokine biology and provide future therapeutic targets
Inhibition of MYC translation through targeting of the newly identified PHB-eIF4F complex as therapeutic strategy in CLL
Dysregulation of messenger RNA (mRNA) translation, including preferential translation of mRNA with complex 5′ untranslated regions such as the MYC oncogene, is recognized as an important mechanism in cancer. Here, we show that both human and murine chronic lymphocytic leukemia (CLL) cells display a high translation rate, which is inhibited by the synthetic flavagline FL3, a prohibitin (PHB)-binding drug. A multiomics analysis performed in samples from patients with CLL and cell lines treated with FL3 revealed the decreased translation of the MYC oncogene and of proteins involved in cell cycle and metabolism. Furthermore, inhibiting translation induced a proliferation arrest and a rewiring of MYC-driven metabolism. Interestingly, contrary to other models, the RAS-RAF-(PHBs)-MAPK pathway is neither impaired by FL3 nor implicated in translation regulation in CLL cells. Here, we rather show that PHBs are directly associated with the eukaryotic initiation factor (eIF)4F translation complex and are targeted by FL3. Knockdown of PHBs resembled FL3 treatment. Importantly, inhibition of translation controlled CLL development in vivo, either alone or combined with immunotherapy. Finally, high expression of translation initiation–related genes and PHBs genes correlated with poor survival and unfavorable clinical parameters in patients with CLL. Overall, we demonstrated that translation inhibition is a valuable strategy to control CLL development by blocking the translation of several oncogenic pathways including MYC. We also unraveled a new and direct role of PHBs in translation initiation, thus creating new therapeutic opportunities for patients with CLL
Chemokine CXCL4 interactions with extracellular matrix proteoglycans mediate widespread immune cell recruitment independent of chemokine receptors
Leukocyte recruitment from the vasculature into tissues is a crucial component of the immune system but is also key to inflammatory disease. Chemokines are central to this process but have yet to be therapeutically targeted during inflammation due to a lack of mechanistic understanding. Specifically, CXCL4 (Platelet Factor 4, PF4) has no established receptor that explains its function. Here, we use biophysical, in vitro, and in vivo techniques to determine the mechanism underlying CXCL4-mediated leukocyte recruitment. We demonstrate that CXCL4 binds to glycosaminoglycan (GAG) sugars on proteoglycans within the endothelial extracellular matrix, resulting in increased adhesion of leukocytes to the vasculature, increased vascular permeability, and non-specific recruitment of a range of leukocytes. Furthermore, GAG sulfation confers selectivity onto chemokine localization. These findings present mechanistic insights into chemokine biology and provide future therapeutic targets
On the mechanism of oscillations in three-phase system containing cationic surfactant and nitrobenzene liquid membrane
Oscillations of electrochemical potential difference between donor and acceptor aqueous phases of nitrobenzene oscillator containing hexadecyltrimethylammonium bromide were observed. It was shown that this potential difference is composed of two–phase boundary potentials between a membrane and an appropriate aqueous phase. It appears that oscillations occur at an aqueous acceptor/membrane interface. They are caused by adsorption/desorption processes of surfactant ions pairs with bromide or picrate followed by their transfer to the acceptor phase. The processes taking part in three stages of oscillation mechanism were suggested
Stability of supported liquid membranes containing Acorga P-50 as carrier
The coupled transport of copper(II) ions through supported liquid membranes (SLM) was examined in zeroth order steady-state kinetic regime using Acorga P-50 as carrier. SLM life-times were estimated using a new method based on kinetic analysis. The influence of different experimental conditions on the transport rate allowed to establish various factors determining membrane stability. SLM life-time seems to depend in a clearcut way on both the type of polymeric support and the nature of liquid membranes suggesting that solute-solvent (and polymer solvent) interactions play a dominant role in membrane stability. It was shown that water transport, if any, occurs only through empty pores of the polymeric support. No clear effect of osmotic pressure gradient on liquid membrane stability was found
- …