38 research outputs found

    Detection of Ser/Thr protein phosphatases in Neurospora crassa

    Get PDF
    Protein phosphorylation is a frequent posttranslational modification regulating cellular processes in eukaryotes. The phosphate content of a protein is determined by the conflicting activities of protein kinases and phosphatases. Protein phosphatases were divided into Ser/Thr and Tyr specific groups, depending on the phosphorylated residue in the substrate molecules. The former group was further classified based on enzymatic criteria (reviewed in Cohen 1989 Ann. Rev. Biochem. 58:453-508). Protein phosphatase 1 (PP1) is inhibited by two heat stable proteins termed inhibitor-1 and -2. Protein phosphatase 2A is inhibited by nanomolar concentration of the tumor promoter okadaic acid. Protein phosphatase 2B (PP2B) - also called calcineurin - is stimulated by Ca-calmodulin, and protein phosphatase 2C (PP2C) is a Mg2+ dependent enzyme. Molecular cloning of the catalytic subunits revealed that PP1-PP2A-PP2B consist of a highly conserved superfamily of proteins

    The chaperone protein clusterin may serve as a cerebrospinal fluid biomarker for chronic spinal cord disorders in the dog

    Get PDF
    Chronic spinal cord dysfunction occurs in dogs as a consequence of diverse aetiologies, including long-standing spinal cord compression and insidious neurodegenerative conditions. One such neurodegenerative condition is canine degenerative myelopathy (DM), which clinically is a challenge to differentiate from other chronic spinal cord conditions. Although the clinical diagnosis of DM can be strengthened by the identification of the Sod1 mutations that are observed in affected dogs, genetic analysis alone is insufficient to provide a definitive diagnosis. There is a requirement to identify biomarkers that can differentiate conditions with a similar clinical presentation, thus facilitating patient diagnostic and management strategies. A comparison of the cerebrospinal fluid (CSF) protein gel electrophoresis profile between idiopathic epilepsy (IE) and DM identified a protein band that was more prominent in DM. This band was subsequently found to contain a multifunctional protein clusterin (apolipoprotein J) that is protective against endoplasmic reticulum (ER) stress-mediated apoptosis, oxidative stress, and also serves as an extracellular chaperone influencing protein aggregation. Western blot analysis of CSF clusterin confirmed elevated levels in DM compared to IE (p < 0.05). Analysis of spinal cord tissue from DM and control material found that clusterin expression was evident in neurons and that the clusterin mRNA levels from tissue extracts were elevated in DM compared to the control. The plasma clusterin levels was comparable between these groups. However, a comparison of clusterin CSF levels in a number of neurological conditions found that clusterin was elevated in both DM and chronic intervertebral disc disease (cIVDD) but not in meningoencephalitis and IE. These findings indicate that clusterin may potentially serve as a marker for chronic spinal cord disease in the dog; however, additional markers are required to differentiate DM from a concurrent condition such as cIVDD

    The post-transcriptional trans-acting regulator, TbZFP3, co-ordinates transmission-stage enriched mRNAs in Trypanosoma brucei

    Get PDF
    Post-transcriptional gene regulation is essential to eukaryotic development. This is particularly emphasized in trypanosome parasites where genes are co-transcribed in polycistronic arrays but not necessarily co-regulated. The small CCCH protein, TbZFP3, has been identified as a trans-acting post-transcriptional regulator of Procyclin surface antigen expression in Trypanosoma brucei. To investigate the wider role of TbZFP3 in parasite transmission, a global analysis of associating transcripts was carried out. Examination of a subset of the selected transcripts revealed their increased abundance through mRNA stabilization upon TbZFP3 ectopic overexpression, dependent upon the integrity of the CCCH zinc finger domain. Reporter assays demonstrated that this regulation was mediated through 3′-UTR sequences for two target transcripts. Global developmental expression profiling of the cohort of TbZFP3-selected transcripts revealed their significant enrichment in transmissible stumpy forms of the parasite. This analysis of the specific mRNAs selected by the TbZFP3mRNP provides evidence for a developmental regulon with the potential to co-ordinate genes important in parasite transmission

    New discoveries in the transmission biology of sleeping sickness parasites: applying the basics

    Get PDF
    The sleeping sickness parasite, Trypanosoma brucei, must differentiate in response to the changing environments that it encounters during its complex life cycle. One developmental form, the bloodstream stumpy stage, plays an important role in infection dynamics and transmission of the parasite. Recent advances have shed light on the molecular mechanisms by which these stumpy forms differentiate as they are transmitted from the mammalian host to the insect vector of sleeping sickness, tsetse flies. These molecular advances now provide improved experimental tools for the study of stumpy formation and function within the mammalian bloodstream. They also offer new routes to therapy via high-throughput screens for agents that accelerate parasite development. Here, we shall discuss the recent advances that have been made and the prospects for future research now available

    Drosophila Uri, a PP1α binding protein, is essential for viability, maintenance of DNA integrity and normal transcriptional activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein phosphatase 1 (PP1) is involved in diverse cellular processes, and is targeted to substrates via interaction with many different protein binding partners. PP1 catalytic subunits (PP1c) fall into PP1α and PP1β subfamilies based on sequence analysis, however very few PP1c binding proteins have been demonstrated to discriminate between PP1α and PP1β.</p> <p>Results</p> <p>URI (unconventional prefoldin RPB5 interactor) is a conserved molecular chaperone implicated in a variety of cellular processes, including the transcriptional response to nutrient signalling and maintenance of DNA integrity. We show that <it>Drosophila </it>Uri binds PP1α with much higher affinity than PP1β, and that this ability to discriminate between PP1c forms is conserved to humans. Most Uri is cytoplasmic, however we found some protein associated with active RNAPII on chromatin. We generated a <it>uri </it>loss of function allele, and show that <it>uri </it>is essential for viability in <it>Drosophila</it>. <it>uri </it>mutants have transcriptional defects, reduced cell viability and differentiation in the germline, and accumulate DNA damage in their nuclei.</p> <p>Conclusion</p> <p>Uri is the first PP1α specific binding protein to be described in <it>Drosophila</it>. Uri protein plays a role in transcriptional regulation. Activity of <it>uri </it>is required to maintain DNA integrity and cell survival in normal development.</p

    Transcriptomes of <i>Trypanosoma brucei</i> rhodesiense from sleeping sickness patients, rodents and culture:Effects of strain, growth conditions and RNA preparation methods

    Get PDF
    All of our current knowledge of African trypanosome metabolism is based on results from trypanosomes grown in culture or in rodents. Drugs against sleeping sickness must however treat trypanosomes in humans. We here compare the transcriptomes of Trypanosoma brucei rhodesiense from the blood and cerebrospinal fluid of human patients with those of trypanosomes from culture and rodents. The data were aligned and analysed using new user-friendly applications designed for Kinetoplastid RNA-Seq data. The transcriptomes of trypanosomes from human blood and cerebrospinal fluid did not predict major metabolic differences that might affect drug susceptibility. Usefully, there were relatively few differences between the transcriptomes of trypanosomes from patients and those of similar trypanosomes grown in rats. Transcriptomes of monomorphic laboratory-adapted parasites grown in in vitro culture closely resembled those of the human parasites, but some differences were seen. In poly(A)-selected mRNA transcriptomes, mRNAs encoding some protein kinases and RNA-binding proteins were under-represented relative to mRNA that had not been poly(A) selected; further investigation revealed that the selection tends to result in loss of longer mRNAs

    The F0F1-ATP Synthase Complex Contains Novel Subunits and Is Essential for Procyclic Trypanosoma brucei

    Get PDF
    The mitochondrial F0F1 ATP synthase is an essential multi-subunit protein complex in the vast majority of eukaryotes but little is known about its composition and role in Trypanosoma brucei, an early diverged eukaryotic pathogen. We purified the F0F1 ATP synthase by a combination of affinity purification, immunoprecipitation and blue-native gel electrophoresis and characterized its composition and function. We identified 22 proteins of which five are related to F1 subunits, three to F0 subunits, and 14 which have no obvious homology to proteins outside the kinetoplastids. RNAi silencing of expression of the F1 α subunit or either of the two novel proteins showed that they are each essential for the viability of procyclic (insect stage) cells and are important for the structural integrity of the F0F1-ATP synthase complex. We also observed a dramatic decrease in ATP production by oxidative phosphorylation after silencing expression of each of these proteins while substrate phosphorylation was not severely affected. Our procyclic T. brucei cells were sensitive to the ATP synthase inhibitor oligomycin even in the presence of glucose contrary to earlier reports. Hence, the two novel proteins appear essential for the structural organization of the functional complex and regulation of mitochondrial energy generation in these organisms is more complicated than previously thought

    High-confidence glycosome proteome for procyclic form <em>Trypanosoma brucei</em> by epitope-tag organelle enrichment and SILAC proteomics

    Get PDF
    The glycosome of the pathogenic African trypanosome Trypanosoma brucei is a specialized peroxisome that contains most of the enzymes of glycolysis and several other metabolic and catabolic pathways. The contents and transporters of this membrane-bounded organelle are of considerable interest as potential drug targets. Here we use epitope tagging, magnetic bead enrichment, and SILAC quantitative proteomics to determine a high-confidence glycosome proteome for the procyclic life cycle stage of the parasite using isotope ratios to discriminate glycosomal from mitochondrial and other contaminating proteins. The data confirm the presence of several previously demonstrated and suggested pathways in the organelle and identify previously unanticipated activities, such as protein phosphatases. The implications of the findings are discussed

    How do trypanosomes change gene expression in response to the environment?

    Full text link
    corecore