7 research outputs found
Natamycin sequesters ergosterol and interferes with substrate transport by the lysine transporter Lyp1 from yeast
Natamycin is a polyene macrolide, widely employed to treat fungal keratitis and other yeast infections as well as to protect food products against fungal molds. In contrast to other polyene macrolides, such as nystatin or amphotericin B, natamycin does not form pores in yeast membranes, and its mode of action is not well understood. Here, we have employed a variety of spectroscopic methods, computational modeling, and membrane reconstitution to study the molecular interactions of natamycin underlying its antifungal activity. We find that natamycin forms aggregates in an aqueous solution with strongly altered optical properties compared to monomeric natamycin. Interaction of natamycin with model membranes results in a concentration-dependent fluorescence increase which is more pronounced for ergosterol- compared to cholesterol-containing membranes up to 20 mol% sterol. Evidence for formation of specific ergosterol-natamycin complexes in the bilayer is provided. Using nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy, we find that natamycin sequesters sterols, thereby interfering with their well-known ability to order acyl chains in lipid bilayers. This effect is more pronounced for membranes containing the sterol of fungi, ergosterol, compared to those containing mammalian cholesterol. Natamycin interferes with ergosterol-dependent transport of lysine by the yeast transporter Lyp1, which we propose to be due to the sequestering of ergosterol, a mechanism that also affects other plasma membrane proteins. Our results provide a mechanistic explanation for the selective antifungal activity of natamycin, which can set the stage for rational design of novel polyenes in the future
Ratiometric fluorescence nanoscopy and lifetime imaging of novel Nile Red analogs for analysis of membrane packing in living cells
Abstract Subcellular membranes have complex lipid and protein compositions, which give rise to organelle-specific membrane packing, fluidity, and permeability. Due to its exquisite solvent sensitivity, the lipophilic fluorescence dye Nile Red has been used extensively to study membrane packing and polarity. Further improvement of Nile Red can be achieved by introducing electron-donating or withdrawing functional groups. Here, we compare the potential of derivatives of Nile Red with such functional substitutions for super-resolution fluorescence microscopy of lipid packing in model membranes and living cells. All studied Nile Red derivatives exhibit cholesterol-dependent fluorescence changes in model membranes, as shown by spectrally resolved stimulated emission depletion (STED) microscopy. STED imaging of Nile Red probes in cells reveals lower membrane packing in fibroblasts from healthy subjects compared to those from patients suffering from Niemann Pick type C1 (NPC1) disease, a lysosomal storage disorder with accumulation of cholesterol and sphingolipids in late endosomes and lysosomes. We also find small but consistent changes in the fluorescence lifetime of the Nile Red derivatives in NPC1 cells, suggesting altered hydrogen-bonding capacity in their membranes. All Nile Red derivatives are essentially non-fluorescent in water but increase their brightness in membranes, allowing for their use in MINFLUX single molecule tracking experiments. Our study uncovers the potential of Nile Red probes with functional substitutions for nanoscopic membrane imaging
Natamycin interferes with ergosterol-dependent lipid phases in model membranes
Natamycin is an antifungal polyene macrolide that is used as a food preservative but also to treat fungal keratitis and other yeast infections. In contrast to other polyene antimycotics, natamycin does not form ion pores in the plasma membrane, but its mode of action is poorly understood. Using nuclear magnetic resonance (NMR) spectroscopy of deuterated sterols, we find that natamycin slows the mobility of ergosterol and cholesterol in liquid-ordered (Lo) membranes to a similar extent. This is supported by molecular dynamics (MD) simulations, which additionally reveal a strong impact of natamycin dimers on sterol dynamics and water permeability. Interference with sterol-dependent lipid packing is also reflected in a natamycin-mediated increase in membrane accessibility for dithionite, particularly in bilayers containing ergosterol. NMR experiments with deuterated sphingomyelin (SM) in sterol-containing membranes reveal that natamycin reduces phase separation and increases lipid exchange in bilayers with ergosterol. In ternary lipid mixtures containing monounsaturated phosphatidylcholine, saturated SM, and either ergosterol or cholesterol, natamycin interferes with phase separation into Lo and liquid-disordered (Ld) domains, as shown by NMR spectroscopy. Employing the intrinsic fluorescence of natamycin in ultraviolet-sensitive microscopy, we can visualize the binding of natamycin to giant unilamellar vesicles (GUVs) and find that it has the highest affinity for the Lo phase in GUVs containing ergosterol. Our results suggest that natamycin specifically interacts with the sterol-induced ordered phase, in which it disrupts lipid packing and increases solvent accessibility. This property is particularly pronounced in ergosterol containing membranes, which could underlie the selective antifungal activity of natamycin
Novel methods to characterise spatial distribution and enantiomeric composition of usnic acids in four Icelandic lichens
Highlights:
• A chiral HPLC method was validated to determine usnic acid (UA) enantiomer ratios.
• Molecular dynamics simulation revealed chiral chromatographic mechanisms.
• MS imaging was used for spatial distribution of UA in lichen cross sections.
• Fluorescence microscopy was used for spatial imaging of UA in lichen cross sections.
Abstract:
Usnic acid is an antibiotic metabolite produced by a wide variety of lichenized fungal lineages. The enantiomers of usnic acid have been shown to display contrasting bioactivities, and hence it is important to determine their spatial distribution, amounts and enantiomeric ratios in lichens to understand their roles in nature and grasp their pharmaceutical potential. The overall aim of the study was to characterise the spatial distribution of the predominant usnic acid enantiomer in lichens by combining spatial imaging and chiral chromatography. Specifically, separation and quantification of usnic acid enantiomers in four common lichens in Iceland was performed using a validated chiral chromatographic method. Molecular dynamics simulation was carried out to rationalize the chiral separation mechanism. Spatial distribution of usnic acid in the lichen thallus cross-sections were analysed using Desorption Electrospray Ionization-Imaging Mass Spectrometry (DESI-IMS) and fluorescence microscopy. DESI-IMS confirmed usnic acid as a cortical compound, and revealed that usnic acid can be more concentrated around the algal vicinity. Fluorescence microscopy complemented DESI-IMS by providing more detailed distribution information. By combining results from spatial imaging and chiral separation, we were able to visualize the distribution of the predominant usnic acid enantiomer in lichen cross-sections: (+)-usnic acid in Cladonia arbuscula and Ramalina siliquosa, and (−)-usnic acid in Alectoria ochroleuca and Flavocetraria nivalis. This study provides an analytical foundation for future environmental and functional studies of usnic acid enantiomers in lichens