69 research outputs found

    Peridotite enclaves hosted by Mesoarchaean TTG-suite orthogneisses in the Fiskefjord region of southern West Greenland

    Get PDF
    AbstractThis study presents bulk-rock major, trace, and platinum-group element data, as well as mineral chemistry for peridotites which form large enclaves (up to 500×1000m) within Mesoarchaean orthogneisses of the Akia terrane in the Fiskefjord region, southern West Greenland. The largest peridotite body, known as Seqi, contains highly fosteritic olivine with a median Mg# of 92.6 and hosts extensive layers of chromitite, which can be traced for tens of metres with thicknesses of up to 30cm. Thinner (<100m thick), but extensive (up to 2000m long) peridotite sheets are associated with coarse norite and orthopyroxenite with distinct cumulate textures in the Amikoq complex, located a few tens of kilometres south of Seqi. Intercalated amphibolites of tholeiitic basaltic composition show complementary geochemical evolution to the peridotites, consistent with igneous crystal fractionation trends. The U-shaped trace element patterns of the peridotites may either reflect the parental melt composition from which these olivine-rich rocks were derived, or alternatively this feature may be the result of melt-rock interaction. Overall, we interpret the Fiskefjord region peridotites to have formed as ultramafic cumulates derived from Archaean high-Mg, low Ca/Al magmas, although their geodynamic setting remains to be established

    Corundum formation by metasomatic reactions in Archean metapelite, SW Greenland: Exploration vectors for ruby deposits within high-grade greenstone belts

    Get PDF
    Corundum (ruby-sapphire) is known to have formed in situ within Archean metamorphic rocks at several localities in the North Atlantic Craton of Greenland. Here we present two case studies for such occurrences: (1) Maniitsoq region (Kangerdluarssuk), where kyanite paragneiss hosts ruby corundum, and (2) Nuuk region (Storo), where sillimanite gneiss hosts ruby corundum. At both occurrences, ultramafic rocks (amphibole-peridotite) are in direct contact with the ruby-bearing zones, which have been transformed to mica schist by metasomatic reactions. The bulk-rock geochemistry of the ruby-bearing rocks is consistent with significant depletion of SiO2 in combination with addition of Al2O3, MgO, K2O, Th and Sr relative to an assumed aluminous precursor metapelite. Phase equilibria modelling supports ruby genesis from the breakdown of sillimanite and kyanite at elevated temperatures due to the removal of SiO2. The juxtaposition of relatively silica-and aluminum-rich metasedimentary rocks with low silica ultramafic rocks established a chemical potential gradient that leached/mobilized SiO2 allowing corundum to stabilize in the former rocks. Furthermore, addition of Al2O3 via a metasomatic reaction is required, because Al/Ti is fractionated between the aluminous precursor metapelites and the resulting corundum-bearing mica schist. We propose that Al was mobilized either by complexation with hydroxide at alkaline conditions, or that Al was transported as K-Al-Si-O polymers at deep crustal levels. The three main exploration vectors for corundum within Archean greenstone belts are: (1) amphibolite-to granulite-facies metamorphic conditions, (2) the juxtaposition of ultramafic rocks and aluminous metapelite, and (3) mica-rich reactions zones at their interface.Carlsberg Foundation [Cf16-0059

    Pressure--Temperature History of the&gt; 3 Ga Tartoq Greenstone Belt in Southwest Greenland and Its Implications for Archaean Tectonics

    Get PDF
    CITATION: Van Hinsberg, V. et al. 2018. Pressure–temperature history of the >3 Ga Tartoq Greenstone belt in Southwest Greenland and its implications for Archaean tectonics. Geosciences, 8:367, doi:10.3390/geosciences8100367.The original publication is available at https://www.mdpi.comThe Tartoq greenstone belt of southwest Greenland represents a well-preserved section through >3 Ga old oceanic crust and has the potential to provide important constraints on the composition and geodynamics of the Archaean crust. Based on a detailed structural examination, it has been proposed that the belt records an early style of horizontal convergent plate tectonics where elevated temperatures, compared to the modern-day, led to repeated aborted subduction and tonalite–trondhjemite–granodiorite (TTG) type melt formation. This interpretation hinges on pressure–temperature (P–T) constraints for the belt, for which only preliminary estimates are currently available. Here, we present a detailed study of the pressure–temperature conditions and metamorphic histories for rocks from all fragments of the Tartoq belt using pseudosection modelling and geothermobarometry. We show that peak conditions are predominantly amphibolite facies, but range from 450 to 800 °C at up to 7.5 kbar; reaching anatexis with formation of TTG-type partial melts in the Bikuben segment. Emplacement of the Tartoq segments into the host TTG gneisses took place at approximately 3 Ga at 450–500 °C and 4 kbar as constrained from actinolite–chlorite–epidote–titanite–quartz parageneses, and was followed by extensive hydrothermal retrogression related to formation of shear zone-hosted gold mineralisation. Tourmaline thermometry and retrograde assemblages in mafic and ultramafic lithologies constrain this event to 380 ± 50 °C at a pressure below 1 kbar. Our results show that the convergent tectonics recorded by the Tartoq belt took place at a P–T gradient markedly shallower than that of modern-day subduction, resulting in a hot, weak and buoyant slab unable to generate and transfer ‘slab pull’, nor sustain a single continuous downgoing slab. The Tartoq belt suggests that convergence was instead accomplished by under-stacking of slabs from repeated aborted subduction. The shallow P–T path combined with thermal relaxation following subduction stalling subsequently resulted in partial melting and formation of TTG melts.https://www.mdpi.com/2076-3263/8/10/367Publisher's versio

    Archaean chromitites show constant Fe 3+ /ΣFe in Earth's asthenospheric mantle since 3.8 Ga

    Get PDF
    Theoretical and planetary studies show that the Earth’s upper mantle is more oxidised than it should be. The mechanism by which this took place and the timing of the oxidation is contested. Here we present new Mössbauer spectroscopy measurements of the ionic ratio Fe3+/(Fe3++Fe2+) in the mineral chromite hosted in mantle-derived melts to show that there is no change in mantle Fe3+/(Fe3++Fe2+) ratio before and after the oxidation of the Earth’s atmosphere at ca. 2.4 Ga and over Earth history from 3.8 Ga to 95 Ma. Our finding supports the view that the oxidation of the asthenospheric mantle was very early and that the oxygenation of the Earth’s atmosphere was not directly coupled to mantle processes.Uo

    Metasomatic Reactions between Archean Dunite and Trondhjemite at the Seqi Olivine Mine in Greenland

    Get PDF
    A metasomatic zone formed between the contact of a 2940 &plusmn; 5 Ma intrusive trondhjemite sheet in the Archean dunite of the Seqi Ultramafic Complex, SW Greenland, consists of three distinct mineral zones dominated by (1) talc, (2) anthophyllite, and (3) phlogopite. These zones supposedly resulted from a process of dissolution of olivine by silica rich fluid residual from the trondhjemite magma, with crystallization of secondary minerals along a compositional gradient in the fluid phase. A zircon crystal inclusion in a large (4 cm) olivine porphyroblast was dated in situ via LA-ICP-MS U&ndash;Pb isotope analysis, yielding a weighted mean 207Pb/206Pb age of 2963 &plusmn; 1 Ma, which coincides with granulite facies metamorphism and potential dehydration. Considering phase relations appropriate for the dunite composition, we deduced the talc forming conditions to be at temperatures of 600&ndash;650 &deg;C and at a pressure below 1 GPa. This is supported by oxygen isotope data for talc, anthophyllite and phlogopite in the metasomatic zone, which suggests formation in the temperature range of 600&ndash;700 &deg;C from fluids that had a &delta;18O of ~8&permil; and a &Delta;&rsquo;17O0.528 of about &minus;40 ppm, i.e., from fluids that could have been derived from the late stage trondhjemite sheet

    Temporal evolution of 142Nd signatures in SW Greenland from high precision MC-ICP-MS measurements

    Get PDF
    Measurements of 142Nd isotope signatures in Archean rocks are a powerful tool to investigate the earliest silicate differentiation events on Earth. Here, we introduce a new analytical protocol that allows high precision radiogenic and mass-independent Nd isotope measurements by MC-ICP-MS. To validate our method, we have measured well-characterized ∼3.72 to ∼3.8 Ga samples from the Eoarchean Itsaq Gneiss Complex and associated supracrustal belts, as well as Mesoarchean greenstones and a Proterozoic dike in SW Greenland, including lithostratigraphic units that were previously analyzed for 142-143Nd isotope systematics, by both TIMS and MC-ICP-MS. Our μ142Nd values for ∼3.72 to ∼3.8 Ga rocks from the Isua region range from +9.2 ± 2.6 to +13.2 ± 1.1 ppm and are in good agreement with previous studies. Using coupled 142,143Nd/144Nd isotope systematics from our data for ∼3.8 Ga mafic-ultramafic successions from the Isua region, we can confirm previous age constraints on the earliest silicate differentiation events with differentiation age of 4.390−0.060+0.045 Ga. Moreover, we can resolve a statistically significant decrease of 142Nd/144Nd isotope compositions in the ambient mantle of SW Greenland that already started to commence by Eoarchean time, between ∼3.8 Ga (μ142Nd = +13.0 ± 1.1) and ∼ 3.72 Ga (μ142Nd = +9.8 ± 1.0). Even lower but homogeneous μ142Nd values of +3.8 ± 1.1 are found in ∼3.4 Ga mantle-derived rocks from the Ameralik dike swarms. Our study reveals that ε143Nd(i) and εHf(i) values of Isua rocks scatter more than it would be expected from a single stage differentiation event as implied from nearly uniform μ142Nd values, suggesting that the previously described decoupling of Hf and Nd isotopes is not a primordial magma ocean signature. Instead, we conclude that some of second stage processes like younger mantle depletion events or recycling of subducted material affected the 147Smsingle bond143Nd isotope systematics. The preservation of pristine whole-rock isochrons largely rules out a significant disturbance by younger alteration events. Based on isotope and trace element modelling, we argue that the temporal evolution of coupled 142,143Nd/144Nd isotope compositions in the ambient mantle beneath the Isua rocks is best explained by the progressive admixture of material to the Isua mantle source that must have had present-day-like μ142Nd compositions. In contrast, Mesoarchean mafic rocks from the ∼3.08 Ga Ivisaartoq greenstone belt and the 2.97 Ga inner Ameralik Fjord region as well as a 2.0 Ga Proterozoic dike within that region all have higher μ142Nd values as would be expected from our simple replenishment model. This argues for reworking of older Isua crustal material that carried elevated μ142Nd compositions

    North Atlantic Craton architecture revealed by kimberlite-hosted crustal zircons

    Get PDF
    The Maniitsoq project is supported by the Ministry of Mineral Resources, Government of Greenland. NJG and PAC thank Australian Research Council grant FL160100168 for financial support. ON is supported by Australian Research Council grant FT140101062 and the Melbourne TIE team.Archean cratons are composites of terranes formed at different times, juxtaposed during craton assembly. Cratons are underpinned by a deep lithospheric root, and models for the development of this cratonic lithosphere include both vertical and horizontal accretion. How different Archean terranes at the surface are reflected vertically within the lithosphere, which might inform on modes of formation, is poorly constrained. Kimberlites, which originate from significant depths within the upper mantle, sample cratonic interiors. The North Atlantic Craton, West Greenland, comprises Eoarchean and Mesoarchean gneiss terranes – the latter including the Akia Terrane – assembled during the late Archean. We report U–Pb and Hf isotopic, and trace element, data measured in zircon xenocrysts from a Neoproterozoic (557 Ma) kimberlite which intruded the Mesoarchean Akia Terrane. The zircon trace element profiles suggest they crystallized from evolved magmas, and their Eo- to Neoarchean U–Pb ages match the surrounding gneiss terranes, and highlight that magmatism was episodic. Zircon Hf isotope values lie within two crustal evolution trends: a Mesoarchean trend and an Eoarchean trend. The Eoarchean trend is anchored on 3.8 Ga orthogneiss, and includes 3.6–3.5 Ga, 2.7 and 2.5–2.4 Ga aged zircons. The Mesoarchean Akia Terrane may have been built upon mafic crust, in which case all zircons whose Hf isotopes lie within the Eoarchean trend were derived from the surrounding Eoarchean gneiss terranes, emplaced under the Akia Terrane after ca. 2.97 or 2.7 Ga, perhaps during late Archean terrane assembly. Kimberlite-hosted peridotite rhenium depletion model ages suggest a late Archean stabilization for the lithospheric mantle. The zircon data support a model of lithospheric growth via tectonic stacking for the North Atlantic Craton.Publisher PDFPeer reviewe

    Contrasting Textural and Chemical Signatures of Chromitites in the Mesoarchaean Ulamertoq Peridotite Body, Southern West Greenland

    Get PDF
    Peridotites occur as lensoid bodies within the Mesoarchaean orthogneiss in the Akia terrane of Southern West Greenland. The Ulamertoq peridotite body is the largest of these peridotites hosted within the regional orthogneiss. It consists mainly of olivine, orthopyroxene, and amphibole-rich ultramafic rocks exhibiting metamorphic textural and chemical features. Chromitite layers from different localities in Ulamertoq show contrasting characteristics. In one locality, zoned chromites are hosted in orthopyroxene-amphibole peridotites. Compositional zonation in chromites is evident with decreasing Cr and Fe content from core to rim, while Al and Mg increase. Homogeneous chromites from another locality are fairly uniform and Fe-rich. The mineral chemistry of the major and accessory phases shows metamorphic signatures. Inferred temperature conditions suggest that the zoned chromites, homogeneous chromites, and their hosts are equilibrated at different metamorphic conditions. In this paper, various mechanisms during the cumulus to subsolidus stages are explored in order to understand the origin of the two contrasting types of chromites
    • …
    corecore