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Abstract 

  This study presents electron microprobe data for dunite xenoliths from a lamprophyre dyke 

located on the island of Qeqertaa, West Greenland. The minimum age of this dyke is 

Palaeoproterozoic and it experienced amphibolite facies metamorphism and deformation during that 

era. The samples consist of nearly 200 xenoliths with a size range of 0.5-8 cm. These dunite 

xenoliths have olivine Mg#, that range from 80.3 to 94.6 (n = 579) with a mean of 92.6. 

Orthopyroxene is found in three xenoliths and garnet in five others. The latter suggests the depth of 

the Qeqertaa xenolith suite to be near the diamond stability-field, which is substantiated by the 

finding of diamonds in bulk samples of the Qeqertaa dyke. This further indicates the presence of a 

lithospheric mantle domain dominated by high-Mg# dunite to this depth in Palaeoproterozoic time. 

Cr-rich spinel, in the 0.1-0.2 mm size range, is found within and between olivine grains in 

individual xenoliths. These Cr-spinels yield Fe-Mg exchange temperatures of 400-600°C. However, 

the presence of intermediate spinel compositions spanning the lower temperature solvus suggests 

that equilibration temperatures were >550°C. Fe
3+

#, expressed as 100xFe
3+

/(Fe
3+

+Al+Cr)), is 

shown to be a useful parameter in order to screen for altered spinel (Fe
3+

#>10) with disturbed Mg# 

and Cr#. The screened spinel data (Fe
3+

#<10) show a distinctly different trend in terms of spinel 

Cr# versus Mg#, compared to unmetamorphosed xenoliths in Tertiary lavas and dikes from 

Ubekendt Ejland and Wiedemann Fjord, respectively, also located within the North Atlantic craton. 

This difference likely reflects amphibolite facies metamorphic resetting of the Qeqertaa xenolith 

suite by Fe-Mg exchange. Given the similarity of the Qeqertaa xenolith suite with the Ubekendt and 

Wiedemann suites, in terms of their olivine Mg# and spinel Cr# distribution, high-Mg# dunite is 

likely to be an important component of the subcontinental lithospheric mantle beneath the North 

Atlantic craton and appears to have spanned a vertical distance of at least 150 km in this region, 

even during the Palaeoproterozoic. 
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Graphical Abstract (for review)



 We present EMP data for a new suite of dunite xenoliths from a lamprophyre dyke in West 

Greenland. 

 Olivine Mg# averages 92.6 and garnet is present together with macrodiamonds. 

 Spinel Cr# for this suite appears overprinted by metamorphism and formation of mica coatings. 
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Abstract 10 

  This study presents electron microprobe data for dunite xenoliths from a lamprophyre dyke 11 

located on the island of Qeqertaa, West Greenland. The minimum age of this dyke is 12 

Palaeoproterozoic and it experienced amphibolite facies metamorphism and deformation during that 13 

era. The samples consist of nearly 200 xenoliths with a size range of 0.5-8 cm. These dunite 14 

xenoliths have olivine Mg#, that range from 80.3 to 94.6 (n = 579) with a mean of 92.6. 15 

Orthopyroxene is found in three xenoliths and garnet in five others. The latter suggests the depth of 16 

the Qeqertaa xenolith suite to be near the diamond stability-field, which is substantiated by the 17 

finding of diamonds in bulk samples of the Qeqertaa dyke. This further indicates the presence of a 18 

lithospheric mantle domain dominated by high-Mg# dunite to this depth in Palaeoproterozoic time. 19 

Cr-rich spinel, in the 0.1-0.2 mm size range, is found within and between olivine grains in 20 

individual xenoliths. These Cr-spinels yield Fe-Mg exchange temperatures of 400-600°C. However, 21 

the presence of intermediate spinel compositions spanning the lower temperature solvus suggests 22 

that equilibration temperatures were >550°C. Fe
3+

#, expressed as 100xFe
3+

/(Fe
3+

+Al+Cr)), is 23 

shown to be a useful parameter in order to screen for altered spinel (Fe
3+

#>10) with disturbed Mg# 24 

and Cr#. The screened spinel data (Fe
3+

#<10) show a distinctly different trend in terms of spinel 25 
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Cr# versus Mg#, compared to unmetamorphosed xenoliths in Tertiary lavas and dikes from 26 

Ubekendt Ejland and Wiedemann Fjord, respectively, also located within the North Atlantic craton. 27 

This difference likely reflects amphibolite facies metamorphic resetting of the Qeqertaa xenolith 28 

suite by Fe-Mg exchange. Given the similarity of the Qeqertaa xenolith suite with the Ubekendt and 29 

Wiedemann suites, in terms of their olivine Mg# and spinel Cr# distribution, high-Mg# dunite is 30 

likely to be an important component of the subcontinental lithospheric mantle beneath the North 31 

Atlantic craton and appears to have spanned a vertical distance of at least 150 km in this region, 32 

even during the Palaeoproterozoic. 33 

 34 

Keywords: Greenland; Qeqertaa; SCLM; North Atlantic craton; dunite 35 

 36 

1. Introduction 37 

 38 

Determining the composition of the subcontinental lithospheric mantle (SCLM) has implications for 39 

our understanding of the crust-mantle system and its evolution through time. Previous studies on 40 

SCLM xenoliths from Greenland have shown the occurrence of nearly monomineralic dunites 41 

consisting of remarkably refractory olivine with molar Mg/(Mg+Fe
2+

), or Mg#, averaging about 42 

92.8 (e.g. Bernstein et al., 1998, 2006, Bizzarro and Stevenson, 2003; Garrit, 2000; Wittig et al., 43 

2008). The Qeqertaa xenolith suite presented in this study shows equally refractory olivine 44 

compositions. This growing body of data on cratonic mantle xenoliths from Greenland suggests that 45 

such olivine-rich mantle is common here, and perhaps comprises a large proportion of the 46 

lithospheric mantle beneath substantial parts of Greenland.  47 

High and consistent Mg# in olivine is thought to reflect partial melting of the mantle to the point 48 

of exhaustion of orthopyroxene (Bernstein et al., 2007). The implied high degree of melting (37-49 

45%; Bernstein, 1998; Herzberg, 2004) is not achieved in any current geological environment and 50 

is thus thought to reflect a hotter mantle during the formation of cratonic SCLM. This is in 51 
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agreement with the generally Archaean Re-depletion ages of cratonic SCLM xenoliths (e.g. 52 

Hanghøj et al., 2001; Pearson et al., 2003; Shirey and Walker, 1998; Wittig, 2010) and the inferred 53 

hotter mantle at that time (Herzberg et al., 2010). However, the exact formation environment is still 54 

debated with one model proposing a single-stage process in a polybaric melting column either in a 55 

spreading ridge or plume environment (e.g. Aulbach et al., 2011; Bernstein et al., 1998, 2006; 56 

Griffin et al., 2009; Herzberg et al., 2010; Kelemen et al. 1998), whereas another model proposes 57 

flux melting of previously depleted harzburgite in a subduction zone setting (e.g. Canil, 2004; Lee, 58 

2006; Wittig et al., 2008). 59 

In addition to documenting the composition of the Palaeoproterozoic xenolith suite at Qeqertaa 60 

this study also shows that although parameters such as Mg#, and molar Cr/(Cr+Al), or Cr#, may at 61 

first appear to retain information of the primary composition of a mantle xenolith suite, examination 62 

of molar Fe
3+

/(Cr+Al+Fe
3+

), or Fe
3+

#, in associated spinels reveals a history of alteration that 63 

strongly modified both Mg# and Cr# so that even visually unaltered spinel had its chemistry 64 

overprinted during amphibolite facies metamorphism. Thus, spinel compositions, which are widely 65 

thought to be reliable indicators of primary igneous conditions in metamorphic intrusive rocks (e.g. 66 

Barnes, 2000) may reflect re-equilibration during metamorphic events (Evans and Frost, 1975; Sack 67 

and Ghiorso 1991).  68 

 69 

2. Geology 70 

 71 

The Qeqertaa xenolith suite is hosted by an up to 6 m wide vertical dyke of ultramafic 72 

lamprophyric affinity, which crops out on the small island Qeqertaa, some 50 km north of Ilulissat 73 

at 69°38N, 50°38W (Fig. 1). The dyke is one of many that cut late Archaean gneisses and 74 

supracrustal rocks in the Ataa area, eastern Disko Bay (Garde and Steenfelt, 1999; Larsen and Rex, 75 

1992; Marker and Knudsen, 1989). The Qeqertaa dyke has not been dated, but similar intrusions in 76 

the Ataa area have yielded K-Ar ages of 1782 Ma and 1743 Ma, both ±70 Ma (Larsen and Rex, 77 
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1992). Because the dykes have been affected both by metamorphism and deformation linked to the 78 

Palaeoproterozoic Rinkian-Nagsoqtuqidian orogeny, these ages could represent metamorphic 79 

overprinting and thus represent minimum ages, as pointed out by Larsen and Rex (1992). Structural 80 

interpretation suggests that the Ataa region can be divided into a series of crustal blocks with 81 

distinct tectono-magmatic history (Garde and Steenfelt, 1999) and the Qeqertaa dyke is situated in 82 

the border zone between the Ataa domain to the north and the Rodebay domain to the south. 83 

The Qeqertaa xenoliths are rounded to subangular, with a size range of 0.5 cm to 8 cm in the 84 

longest dimension. In several places along the dyke, the xenoliths are so abundant as to make a 85 

clast-supported network. The dyke has brecciated contacts with tonalitic gneisses, and is deformed 86 

with pinch and swell structures. Apophyses are often sheared into tight isoclinal folds. Deformation 87 

mainly affected the matrix, which often shows carbonate crystallization in pressure shadows of the 88 

xenoliths and matrix foliation wrapping around individual xenoliths (Fig. 2). Matrix mineralogy is 89 

dominated by tremolite, mica, carbonate, ilmenite and iron oxides. Of these minerals, only mica and 90 

ilmenite are thought to remain from the primary mineralogy of the dyke matrix, although even these 91 

minerals show evidence of alteration and recrystallization, manifested as oxide exsolution along 92 

cleavage planes in mica, and exsolution lamellae and oxidized microcrystalline overgrowth zones 93 

on ilmenite. 94 

A collection of nearly 200 xenolith samples form the basis of this study. Individual xenoliths 95 

larger than about 3 cm were cut into several slices 5-8 mm thick and all xenoliths were inspected 96 

visually before a subset of 119 xenoliths of varying size were prepared for standard polished thin 97 

sections and analysed by electron microprobe. The xenolith suite as a whole appeared very 98 

homogeneous in terms of mineral mode, texture and grain size. The xenoliths are all dunites with 99 

only a few samples containing spinel, garnet, mica or orthopyroxene (see below). A few xenoliths 100 

are completely serpentinised, while others are relatively fresh peridotite with only local alteration 101 

along minor cracks and veins. However, as shown below, all studied xenoliths have experienced 102 

some degree of chemical modification of their primary minerals even though they at a first glance 103 
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appear nearly unaltered. Typically, in standard thin sections olivine grain margins are yellowish to 104 

light brown, in some samples more dusty brown (Figs. 2 and 3). Such margins can be relatively 105 

wide (1-2 mm), but are mostly in the order of 0.2-0.6 mm, such as in the example of xenolith 106 

sample qq-2 in Fig. 3. Spinel is often oxidized, with irregular grain margins and is opaque in 107 

standard thin sections. In rare cases, the spinel has retained a brownish translucent core. Secondary 108 

oxide, mainly magnetite, is common along veins and cracks within olivine grains and at the rim of 109 

individual xenoliths (Fig. 3). Some examples of xenoliths and their textures are given in Fig. 2a-d. 110 

All xenoliths are coarse protogranular, following the terminology of Mercier and Nicolas (1975). 111 

Grain size varies from 1-2 mm to >30 mm for olivine. Representative smaller xenoliths are 112 

composed of only a few olivine grains. Well-rounded olivine megacrysts up to 30 mm are 113 

frequently found in the matrix. An example of one coarse grained xenolith is given in Fig. 3, with 114 

olivine grain size ranging 1-15 mm. Orthopyroxene, found in three xenoliths, occurs as ~ 1 mm 115 

wide circular inclusions in large olivine grains (Fig. 2). Garnet, found in five xenoliths (out of 200), 116 

occurs as rounded 1-2 mm grains, but one 4 mm rounded garnet grain appears in xenolith #463737-117 

1. Only one garnet is partly preserved (sample #463711), while all other grains have been 118 

completely replaced by kelyphite (Fig. 2c). Cr-rich spinel is found as minute anhedral inclusions in 119 

the 0.1-0.2 mm size range within olivine, or between olivine grains. Relic brown translucent spinel 120 

is sometimes found, jacketed by opaque oxide, and nearly always with a thin (20-50 µm wide) 121 

coating of mica forming the outer contact to host olivine (Figs. 6a, 7a, 8a). Chrome-bearing 122 

magnetite occurs throughout the xenoliths, as irregular larger grains (1-2 mm), possibly replacing 123 

primary chrome spinel. It also occurs as smaller individual grains or aggregates of smaller grains 124 

(0.1-0.3 mm), often associated with fractures or veins in olivine. These chrome bearing magnetite 125 

grains likely represent alteration products. Primary mica is found in two xenoliths. In sample 126 

#463707-2, a 2 mm long colourless mica grain is enclosed by olivine. In sample #463706-3 similar 127 

colourless mica is found interstitially to medium grained olivine crystals. 128 
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Several xenoliths show evidence of fracturing, and the presence of carbonate-magnetite 129 

intergrowths in such fractures suggests that the xenoliths became disaggregated within the 130 

lamprophyre dyke during crustal deformation. This can be appreciated in Fig. 2a, showing 131 

secondary carbonate mineralization along extensive fracturing of olivine in xenolith #1 in sample 132 

#463715 connected to similar carbonate-Fe-oxide intergrowth in the matrix. Another example of 133 

this is presented in Fig. 2b (sample #463728), where carbonate-Fe-oxide intergrowth forms „horns‟ 134 

at the edges of xenoliths #1 and #2 - probably representing growth in pressure shadows. 135 

Tremolite and talc is coexisting with olivine in some of the altered portions of the xenoliths and 136 

provides evidence for premetamorphic alteration of at least parts of the olivine grains. A collection 137 

of micro- and macrodiamonds have been recovered from several bulk samples of the Qeqertaa dyke 138 

(Marmo et al., 2012) during exploration activities from 2007-2012. 139 

 140 

3. Analytical technique 141 

 142 

Minerals grains were analysed on standard 40 µm polished thin sections, using the JEOL 143 

electron microprobe at the Institute of Geology and Geography, University of Copenhagen. All 144 

elements in silicates were measured by WDS, with 20 s peak count time for Na, Mg, Fe, Si, and Ti, 145 

while Cr, Ni, Ca and Al were measured with 40 s peak count time. Natural and synthetic standards 146 

were measured at the beginning and at the end of each session. For traverses in spinel, an analytical 147 

routine optimized for oxides was utilized and the elements analysed were Mg, Fe, Si, Ca, Ti, Cr, 148 

Mn, Fe, Ni and Zn. Peak count time for Zn was 40 s and 10 s for remaining elements. Background 149 

count time on either side of the peak was half that of peak count time for both silicates and spinels. 150 

Table 1 in the online supplementary material lists a series of representative mineral data. The 151 

mineral data presented there represents the core compositions, typically 2-3 analyses, and for 152 

orthopyroxene and garnet, an average of 4-6 analyses.   153 

 154 
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4. Results 155 

 156 

4.1. Olivine chemistry 157 

 158 

There is a large compositional variation in olivine. The overall range in Mg# 159 

(100xMg/(Mg+Fe
2+

)) out of almost 600 analyses is from 80.3 to 94.6 as shown in the insert in Fig. 160 

4. Ni varies from 1328 ppm to 4008 ppm (median value of 2727 ppm) and does not correlate with 161 

Mg#. Because olivine composition cannot be related to the textural state of olivine, i.e. xenocrystic 162 

or xenolithic (not shown), all olivine in the following is referred to as xenoliths. Fig. 4 also shows 163 

the distribution of Mg# in olivine in 119 individual xenoliths, as presented in Table 1 (see online 164 

supplementary material). While this data set represents core compositions, the range in Mg# is 165 

similarly large, spanning Mg# 80-94. Neither of the data sets (all olivine analyses and xenolith 166 

cores only) show a good correlation of Ni versus Mg# (see Fig. 4, insert). Several olivine grains 167 

have been analysed along traverses from crystal rim to core. The data are presented in Fig. 5 in 168 

terms of the variations in Mg# and Ni contents. Fig. 5a shows a traverse over about 0.3 mm in the 169 

core of a large olivine crystal. The variation in Mg# is moderate in the range 93.4-94.1, while Ni is 170 

in the range 2295-2955 ppm. These ranges are only slightly larger than what is known from olivine 171 

in fresh, unaltered mantle xenoliths from Tertiary volcanics and dykes elsewhere in Greenland 172 

(Bernstein et al., 1998, 2006). 173 

Some Qeqertaa xenoliths have olivine crystals, such as samples #qq1 and #qq4 (Fig. 5b and 5c), 174 

that show similarly consistent Mg# and Ni concentrations over more than one millimetre traverse 175 

and with only a modest zoning with small decreases in Mg# over the outer 0.1 mm of the crystal. 176 

These crystals have only weakly altered olivine rims (#qq1, Fig. 5b) or no detectable alteration 177 

(#qq4-olivine2, Fig. 5c). Other samples contain olivine grains, which show more pronounced 178 

zoning, such as #qq2a-olivine1 and #qq3-olivine1 (Fig. 5d and 5e), with core compositions of 93.4 179 

and 92.0, respectively, and rim compositions of 90.3 and 87.7. Ni varies from an average value of 180 
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about 2500 ppm in the high Mg# region, decreasing to 2000 and then to 1600 ppm at the grain 181 

edges. These two olivine crystals are also typical of the more altered versions of olivine, with thick 182 

0.2-0.3 mm alteration rims marked by brown coloration (Fig. 3a). The colour seems to stem from 183 

minute oxide inclusions, typically less than 1 µm, in the olivine, mainly Fe-oxide, as judged from 184 

microprobe data. 185 

One olivine crystal was analysed with a traverse (Fig. 5f) that runs from crystal core to the edge 186 

against a spinel grain (Fig. 7a). The olivine crystal is homogeneous apart from one fracture, which 187 

coincides with a small excursion from a steady level at around Mg# 92.9 to 92.2, accompanied by a 188 

small decrease in Ni. The olivine grain terminates at a thin veneer (20 µm wide) of mica that 189 

surrounds the spinel grain (Fig. 7a), and the olivine attains its high Mg# and Ni content approaching 190 

this contact (Fig. 5f).  191 

 192 

4.2. Spinel chemistry 193 

 194 

As discussed above, irregular spinel grains or aggregates of magnetite and chromian magnetite 195 

are found along cracks and veins in the olivine xenoliths. Spinel textures and occurrence suggests 196 

that these irregular grains and aggregates are of secondary origin. Spinel grains with similar texture 197 

and composition are also ubiquitous in the matrix and will not be discussed further. 198 

Spinel of likely primary origin is found in portions of the xenoliths, where alteration has been 199 

less intense. Some spinel grains interpreted as relic primary spinel are present in the centre of 200 

irregular masses or aggregates of iron oxide grains. On the basis of microscopy and back-scatter 201 

electronic images, it is apparent that two basic types of relic, primary spinel grains occur: 1) some 202 

(rare) with recognizable primary grains boundaries, only narrow alteration rims and a less modified 203 

core, and 2) more intensely altered grains, with obscured primary grain boundaries, often with 204 

overgrowths of chromian magnetite. 205 
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The best preserved spinel grains are found as two small (0.1-0.3 mm) slightly translucent grains 206 

completely enclosed in a large (12 mm) olivine grain (Fig. 6a). The compositional variation of the 207 

core of this olivine grain is presented in Fig. 5a. The two spinel grains are compositionally similar 208 

with Cr#, calculated as Cr# = (100xCr/(Cr+Al), in the spinel cores of 60.0 ±0.5, increasing to a 209 

maximum of about 62 at grain edges (Fig. 6b). Mg# and Al#, calculated as Al# = 210 

(100xAl/(Fe
3+

+Al+Cr)), also show restricted ranges at around 56 and 39, respectively, decreasing 211 

slightly at grain edges. Fe
3+

# is very low, mostly between 1 and 2, and increasing slightly to 3-4 at 212 

grain edges. ZnO shows slight variation around 0.5 wt.%, while both NiO and TiO2 is at or below 213 

detection limit (Fig. 6d). As examples of the relatively well-preserved spinels of type 1), but with 214 

pronounced alteration, Figs. 7a and 8a show two spinel grains in the 100 µm size range. Texturally 215 

the two grains are similar, with a translucent core, and a pitted and opaque rim. Spinel grain #qq4b-216 

sp1 (Fig. 7a) is rounded and anhedral, typical for spinel grains in xenoliths of cratonic mantle 217 

peridotite, while grain #qq3-sp1 (Fig. 8a) is subhedral. Fine-grained mica aggregates separate the 218 

spinel from hosting olivine grains. Chemically, the two spinel grains share some characteristics with 219 

relatively constant levels of Cr#, Mg#, Fe
3+

#, and Al# in the core, that change markedly at the grain 220 

edges towards elevated Cr# and Fe
3+

# and lower Mg# and Al#. This zoning is also pronounced for 221 

ZnO, which varies from about 1 wt.% in the centre of the spinel grains to 3 wt.% towards the rim 222 

for #qq4-sp1 (Fig. 7d). For spinel #qq3-sp1, the variation and absolute concentrations in ZnO is less 223 

extreme with about 0.4-0.7 wt.% (Fig. 8d). For titanium and nickel, core concentrations are ~ 0.1 224 

wt.% increasing to 0.5 wt.% (TiO2) and ~ 0.3 wt.% (NiO) at the crystal rim (Fig. 7d). Spinel #qq3-225 

sp1 again shows less variation, with 0.2-0.3 wt.% TiO2 and ≤ 0.1 wt.% NiO (Fig. 8d). MnO follows 226 

the pattern of ZnO at similar concentration levels (not shown) for all analysed spinel grains. 227 

As an example of spinels of type 2), which are more altered and anhedral, Fig. 9 illustrates one 228 

grain from sample #qq4, with a short analytical traverse from grain boundary to some way into the 229 

core. As for the type 1 spinels in Figs. 7 and 8, a mosaic of mica crystals completely surrounds this 230 

spinel, separating it from the host olivine. In this case the mica zone is 50-100 µm wide. The spinel 231 
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is opaque and the backscatter electron image (Fig. 9a) does not reveal significant zoning, although 232 

the rounded shape of the primary spinel can be detected inside the ragged rim. In contrast to the 233 

type 1 spinel grains, type 2 shows little variation from core to rim, and instead has extreme Cr#, 234 

approaching 100. Mg# is low (<20) and Fe
3+

# high (>50). Concentrations of minor elements ZnO 235 

and TiO2 are considerably less variable than for type 1 spinel, and typically with values at 0.7-1.0 236 

wt.%, while NiO is low between 0.1 and 0.2 wt.% (Fig. 9d). 237 

From the data presented above it is clear that all spinel grains have undergone variable degrees 238 

of chemical modification since the lamprophyre hosting the xenoliths was emplaced. Only a few 239 

spinel grains have been analysed with electron microprobe traverses, so it is important to use a 240 

chemical parameter that can distinguish between highly altered spinel cores and the less altered 241 

cores that potentially retain their primary Cr#. One such parameter is Fe
3+

#, which varies from 1.3 242 

to 98.0 in Qeqertaa samples. This is in marked contrast to unaltered and unzoned spinel in mantle 243 

xenoliths in Tertiary lavas and dykes in West and East Greenland, which all have Fe
3+

# <10 in 244 

spinels that span a Cr# range of 25-95 (Fig. 10). By contrast, Table 1 in the online supplementary 245 

material lists all spinel data from Qeqertaa that have Fe
3+

# <10; only 20 samples have such low 246 

values.  247 

Fig. 11 illustrates the compositions of Qeqertaa spinel with Fe
3+

# <10. The markedly lower Mg# 248 

at a given Cr#, compared to the xenolith suites of Ubekendt Ejland and Wiedemann Fjord, is an 249 

indication of lower temperature Fe-Mg exchange with olivine and other silicates in the Qeqertaa 250 

spinels. The Qeqertaa samples yield olivine-spinel Fe-Mg exchange temperatures of 400-600°C 251 

(Ballhaus et al., 1991; Sack and Ghiorso, 1991), which is substantially lower than Ubekendt Ejland 252 

(833-960°C; Bernstein et al., 2006) and Wiedemann Fjord (650-995°C; Bernstein et al., 1998). 253 

 254 

4.3. Orthopyroxene chemistry 255 

 256 
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The three orthopyroxene grains from three individual xenoliths show a restricted variation, with 257 

Mg# spanning 92.7-93.7, and with Cr2O3 and Al2O3 levels at 0.41-0.52 wt.% and 0.79-0.85 wt.%, 258 

respectively (Table 1, online supplementary material). CaO is ca. 1.1 wt.% for two samples, while 259 

the remaining sample has only 0.3 wt.% CaO. The three dunite xenoliths that contain orthopyroxene 260 

have no garnet, but the high Cr# (26-30) of all three orthopyroxene grains suggests that they have 261 

equilibrated with garnet, as orthopyroxene from garnet-free peridotite xenoliths have significantly 262 

lower Cr#, mostly less than 20 (Fig. 12). An important note here is that the distinction between 263 

orthopyroxene from garnet-bearing and garnet-free peridotite disappears for orthopyroxene with 264 

extremely low contents of Al2O3 (<0.2 wt.%), that have variable Cr#, from 4-96 (Fig. 12). This is 265 

possibly an artefact of poor analytical accuracy or extreme Al depletion during mantle melting and 266 

melt extraction in spinel stability field (Bernstein et al., 2007; Stachel et al., 1998). However, the 267 

distinction appears robust for orthopyroxene with Al2O3 exceeding 0.2 wt.%. 268 

Because of the lack of coexisting phases, such as garnet or clinopyroxene, it is not possible to 269 

calculate equilibrium temperatures for the garnet-bearing assemblages, and it is indeed questionable 270 

if such calculations would be meaningful, given that the xenoliths were subjected to amphibolite 271 

facies metamorphism after emplacement of the Qeqertaa dyke. 272 

 273 

5. Discussion 274 

 275 

5.1. Metamorphic overprinting 276 

 277 

The strongly zoned nature of olivine and chrome spinel from the xenoliths of Qeqertaa is a 278 

typical aspect of prograde metamorphism of altered peridotite (e.g. Evans and Frost, 1975; Nozaka, 279 

2003; Trommsdorff et al., 1998; Vance and Dungan, 1977). The Qeqertaa olivines with brown, 280 

inclusion-rich grain margins show textural similarity to hydrothermally altered olivine xenocrysts 281 

and xenoliths from Venetia kimberlites, South Africa (Stripp et al., 2006), where thin talc rims form 282 
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on serpentinised olivine grains. In a study of olivine compositional variation in Chugoku peridotite 283 

(Japan), which has been subjected to steep local metamorphic gradients, Nozaka (2003) 284 

demonstrates how primary olivine with Mg# around 91 can attain both higher (to 97.6) and lower 285 

(to 86) Mg# during prograde reactions. The assemblage at Qeqertaa of coexisting olivine, tremolite 286 

and talc is analogous to metamorphic zone 3 of Nozaka, (2003, and references therein), where 287 

essentially all olivine is metamorphic. The metamorphic olivine in Chugoku peridotites forms 288 

overgrowths, along distinct grain boundaries and „healed‟ cracks or veins, where olivine replaces 289 

serpentine. Magnetite-free serpentine is thought to be the precursor of high-Mg# olivine, while low-290 

Mg# olivine is thought to crystallize from magnetite-bearing serpentine. The olivine in Qeqertaa 291 

xenoliths always shows normal zoning with low-Mg# zones crowded with minute Fe-oxide 292 

inclusions. These low-Mg# rims are thus likely to represent recrystallized, partly serpentinised 293 

olivine with Fe-oxide grains remaining from the hydrothermally reacted olivine. 294 

In Qeqertaa xenoliths, all olivine grains show some reaction along grain boundaries, evident 295 

from the presence of either hydrous phases, such as talc, or fine-grained Fe-oxide inclusions. 296 

However, many olivine grain centres are colourless, transparent and inclusion-free down to the 297 

resolution of the electron microprobe. These olivine cores coincide with maximum Mg# in the 298 

individual olivine and suggest that the cores represent primary olivine that escaped extensive 299 

serpentinisation. Likewise, the typical coarse protogranular texture (Fig. 3) suggests that the 300 

Qeqertaa xenoliths are not entirely recrystallized from serpentine or talc during prograde 301 

metamorphism, as such recrystallization commonly forms equigranular olivine aggregates or highly 302 

elongate olivine resembling spinifex texture (e.g. Trommsdorff et al., 1998). Another piece of 303 

evidence for the colourless olivine to have escaped the initial serpentinization is the presence of 304 

inclusions of pale, inclusion-free phlogopite crystals that are in strong contrast to the dark-brown, 305 

inclusion-rich mica phenocrysts or xenocrysts in the groundmass. 306 

The relatively robust nature of chromite makes these a potential powerful recorder of alteration 307 

processes (e.g. Barnes, 2000; Evans and Frost, 1975; Kimball, 1990). The types of chemical zoning 308 
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depicted in Figs. 6-9 can be explained in terms of hydrothermal alteration followed by prograde 309 

metamorphism from primary chromite with slightly altered crystal rims to magnetite rimmed spinel 310 

grains with equilibrated cores. The high ZnO (mostly at 0.4-3.0 wt.%) present in all spinel grains 311 

with electron probe traverses, show that even spinel cores have been modified by metamorphic 312 

reactions, because primary spinels have ZnO at the 0.1 wt.% level, at least in komatiite flows 313 

(Barnes, 2000). The exception is the spinel portrayed in Fig. 6a, which perhaps escaped strong 314 

modification. Certainly, some spinel has been altered to magnetite, which is found in cracks and 315 

veins, as well as along olivine grain boundaries (Fig. 3). This suggests at least some degree of early 316 

partial serpentinisation and later recrystallization of olivine, which would then leave magnetite 317 

interstitially between olivine crystals as seen in Fig. 3. 318 

The spinel grains in 463722 and #qq-4b (Figs. 6 and 7) are morphologically the least altered 319 

spinel grains of those analysed. The lack of a thick, euhedral Fe-spinel jacket suggests that these 320 

grains have remained relatively undisturbed during metamorphism. While the zoning in the two 321 

spinel grains in 463722 is very modest, #qq-4b shows a more pronounced decrease of magnesium 322 

and aluminium towards the rim and around the transecting crack, which is typical for chromite 323 

equilibrating with olivine, talc, or ferroan magnesite (for Mg) and chlorite (for Al) (Barnes, 2000). 324 

In the case of the Qeqertaa xenoliths, the samples lack chlorite. However, Cr-Al exchange between 325 

spinel and mica, as in the following simplified reaction, would decrease the Al content of spinel: 326 

 327 

MgAl2O4 + 2KMg3CrSi3O10(OH)2 = 3MgCr2O4 + 2 KMg3AlSi3O10(OH)2 328 

 329 

Instead or in addition, metamorphic reactions forming mica from talc + olivine + aluminous 330 

spinel + fluid, as in the following simplified example, could also explain the high Cr# in remaining 331 

Qeqertaa spinels: 332 

 333 
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7Mg3Si4O10(OH)2 + 2Mg2SiO4 + 10MgAlCrO4 + 5K2O(aq) + 3H2O = 10KMg3AlSi3O10(OH)2 + 334 

5MgCr2O4 335 

 336 

 337 

The occurrence of one or both of these reactions is consistent with the phlogopite-rich 338 

composition of the mica that coats the spinel in for example Fig. 7a) at the end of line-1 (see 339 

supplementary data Table 1). 340 

Following Barnes‟ (2000) study, serpentinisation of dunite xenoliths and olivine in the 341 

lamprophyre matrix results in decomposition of olivine and release of Zn. Chromite absorbs Zn, 342 

resulting in a steep concentration profile from high ZnO at altered chromite rims to very low 343 

concentration (<0.1 wt.%) at unaltered chromite cores. Prograde metamorphism to amphibolite 344 

facies subsequently redistributes Zn in the chromite grains and tends to homogenize concentration 345 

differences, which in turn also results in elevated Zn in grains that have retained their primary Cr# 346 

(Barnes, 2000).  347 

In a more extreme case, such as in Fig. 9 (#qq4, line4) aluminium is completely lost, along with 348 

most of the magnesium. The overgrowth of Fe-rich spinel exhibits crystal faces, but still contains 349 

appreciable amounts of Cr. In fact, only a few of the analysed chrome spinel grains have pure 350 

magnetite rims. In a plot of all spinel analyses in terms of their trivalent cations (Fig. 13) these 351 

highly altered grains (as in Fig. 9), and altered spinel rims (Figs. 7-8) plot along the Cr-Fe
3+

 join, 352 

clustering at Cr30Fe
3+

70-Cr50Fe
3+

50 and connecting to the main body of spinel data along the Al-Cr 353 

join at low (generally <10%) Fe
3+

. These intermediate spinel compositions suggest extensive solid 354 

solution between the spinel end-member components (Fe,Mg)Cr2O4, (Fe,Mg)Al2O4 and 355 

(Fe,Mg)Fe2O4 and thus equilibration temperatures above 600°C according to Sack and Ghiorso 356 

(1991). At temperatures at or below 550°C the solid solution stability field is significantly reduced 357 

by miscibility gaps, which expand with decreasing temperature, resulting in formation of coexisting 358 
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chromite and Cr-poor magnetite (see also Barnes, 2000). The presence of intermediate 359 

compositions in the Qeqertaa xenoliths suggests crystallization above the solvus 360 

Fig. 10 shows that most spinel analyses have high Fe
3+

# (>10) reflecting the effects of 361 

hydrothermal alteration and/or amphibolite facies metamorphism. However, even spinel with Fe
3+

# 362 

<10 have lost their primary Mg# as seen in Fig. 11. The least altered Qeqertaa xenoliths plot along 363 

the metamorphic trend identified by Frost and Evans (1975). As in most alpine peridotite massifs, 364 

Fe-Mg exchange between spinel and olivine has reduced spinel Mg#.  365 

Primary spinel Cr# can in some cases be preserved in metamorphosed peridotites. The range of 366 

Cr# in Qeqertaa spinels overlaps with that of Ubekendt Ejland and Wiedemann Fjord xenolith 367 

suites, raising the possibility that some crystals retain primary Cr#‟s. However, Qeqertaa xenolith 368 

spinels plot along the metamorphic Cr# versus Mg# trend of Evans and Frost (1975) for spinels in 369 

chlorite-bearing metaperidotites.  Very high Cr# and low Mg# in metamorphic spinels were also 370 

observed by Barnes and Roeder (2001), further suggesting that Qeqertaa spinel Cr#‟s may have 371 

been modified by metamorphic reactions, perhaps to some degree even for spinels with low Fe
3+

#. 372 

In summary, the combined evidence from olivine and spinel points to a history of partial 373 

replacement of olivine by serpentine during hydrothermal alteration, followed by prograde 374 

metamorphism to amphibolite facies, as suggested by the presence of recrystallized olivine rims, the 375 

character of zoned chrome spinel, and olivine-spinel Fe-Mg thermometry. 376 

 377 

 378 

5.2. Primary olivine compositions 379 

 380 

Considering olivine cores only, the Qeqertaa xenoliths have an average Mg# of 92.6 with a 381 

median Mg# of 92.8. Given the considerable zoning, these values are probably minimum estimates 382 

of the average and median, values of primary Mg#, because (a) some apparent olivine cores may be 383 

from olivine in which the plane of the thin section is parallel to and close to one edge of the crystal, 384 
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and therefore have broad areas of low-Mg#, and (b) even some of the larger, clear grains may be 385 

neoblasts, crystallized from completely serpentinised primary olivine. In any case, olivines from 386 

Qeqertaa xenoliths have highly refractory compositions that are typical for dunite and harzburgite 387 

xenolith suites from the lithospheric mantle beneath Archaean cratons (e.g. Bernstein et al., 1998, 388 

2006, 2007; Boyd, 1989; Boyd et al., 1997; Canil, 2004; Lee and Rudnick, 1999; Menzies, 1990; 389 

Pearson et al. 2003; Wittig, 2008). 390 

The large range in olivine Ni concentrations (1328 ppm to 4008 ppm) portrayed in Fig. 4 and in 391 

detail for a subset of individual olivine crystals in Fig. 5, is not easily explained. Some of the range 392 

may reflect the redistribution of Ni during partial serpentinization and subsequent prograde 393 

metamorphism as discussed above. One likely example is shown in Fig. 5d, in which the 394 

recrystallized olivine rim shows substantially lower Mg# and variable but overall decreasing Ni 395 

content compared to olivine core. However, even for colourless, inclusion-free olivine grains or 396 

olivine cores, there appears to be considerable variation in Ni content. Our microprobe traverses of 397 

seemingly unaltered olivine cores with near-constant Mg# reveal Ni variation spanning 2000-3000 398 

ppm over few hundred microns (Fig. 5b, c and f), although one grain (Fig. 5a) shows a much tighter 399 

variation in Ni with values between 2400 and 2900 ppm. One potential explanation for such 400 

variation could be that all olivine is of metamorphic origin, which in turn implies that the low-401 

temperature hydrothermal alteration altered the entire peridotite mineral assemblage prior to the 402 

prograde metamorphism. We find this to be implausible not only on textural grounds as described 403 

in section 5.1 but also because rare, large, pale mica crystals in the dunite xenoliths are free of the 404 

magnetite inclusions that dominate the altered mica crystals in the groundmass. We find it unlikely 405 

that a phlogopite crystal would maintain its textural integrity if it were engulfed in completely 406 

serpentinized dunite. 407 

During our microprobe work on the olivine, we have not detected any inhomogeneity by back-408 

scatter imagery and the origin of the Ni variation is therefore uncertain. While it could stem from 409 

minute sulphide inclusions, we also note that the majority of the analytical values are within the 410 
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normal range for olivine from olivine-rich, residual mantle peridotites (2000-3500 ppm; e.g., 411 

Bodinier and Godard, 2003). We note that the range in Ni for the Qeqertaa xenolithic olivine is 412 

similar to that observed for other xenolith suites in the North Atlantic craton which may suggest 413 

that this is a common feature (e.g. Bernstein et al. 1998, 2006; Wittig et al., 2008). One possibility 414 

is that early (prior to peridotite entrainment in lamprophyre) melt-rock reaction could be responsible 415 

for some of the decrease in Ni content of olivine, such as is observed in dunite replacing harzburgite 416 

in the Bay of Island ophiolite (Suhr et al. 2003). However, we do not currently have trace element 417 

data to test if melt-rock reactions were significant in this case. Variable Ni concentrations, with very 418 

low values in some parts of olivine crystals, could also be due to the presence of sulfides during 419 

peridotite recrystallization in the mantle. This is observed in sulfide-rich dunites from Oman 420 

(Negishi et al. 2012). However,  no sulphides have been observed in any of the Qeqertaa xenoliths. 421 

Another potential process that might account for the large variability of Ni in olivine is nickel 422 

redistribution during early pervasive serpentinisation, followed by later prograde recrystallisation. 423 

We reiterate that the large Ni variation in olivine appears to be a common feature in Greenlandic 424 

xenolith suites, regardless of their emplacement age or post-emplacement thermal history. A 425 

systematic study of nickel content in olivine for all Greenlandic xenolith suites could address this 426 

question. 427 

With respect to the nearly monomineralic composition of the Qeqertaa xenoliths, they are similar 428 

to the shallow, garnet-free, spinel dunites from Ubekendt Ejland, and the olivine-rich, 429 

orthopyroxene-poor spinel harzburgites from Wiedemann Fjord (average ca. 12 wt.% 430 

orthopyroxene). All three suites have similar average olivine compositions of Mg# 92.6-92.8 431 

(Bernstein et al., 1998, 2006, 2007). The growing body of data on cratonic mantle xenoliths from 432 

Greenland suggests that such olivine-rich mantle may be more common here than in other cratons, 433 

and perhaps is the most abundant lithology in the shallow, cratonic mantle beneath some parts of 434 

Greenland. Sample collections from Southwest Greenland (some 300-800 km south of Disko Bay) 435 

have peridotite xenolith suites typically ranging from 75-100% modal olivine, with compositions 436 
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averaging Mg# 92.5-92.8 (Bizzarro and Stevenson, 2003; Garrit, 2000; Wittig et al., 2008). In other 437 

cratons, such as Kaapvaal, Tanzania, Siberia, and Slave, mantle xenolith suites typically have lower 438 

modal olivine and higher orthopyroxene, with ranges of 40-80% olivine and 20-60% 439 

orthopyroxene, plus additional spinel, clinopyroxene and garnet (see compilations of e.g. Griffin et 440 

al., 2003; Herzberg, 1993; Lee, 2006; Pearson et al., 2003). 441 

It has long been clear that the high Mg# of olivine in cratonic mantle peridotite exceeds that of 442 

olivine from Phanerozoic abyssal peridotite, most orogenic peridotite massifs and most peridotite 443 

from arcs (Bonatti and Michael, 1989; Boyd, 1989; Boyd and Mertzman, 1987; Menzies 1990; 444 

Nixon and Boyd, 1973) and that this elevated Mg# in olivine and bulk rock compositions likely 445 

stems from higher extents of partial melting in the Archaean (Boyd, 1989; Herzberg, 2010; Jordan, 446 

1975; O‟Hara et al., 1975). The nature of the melting processes has on the other hand been subject 447 

to much debate over the last couple of decades, mainly because the orthopyroxene-rich mantle 448 

peridotites beneath Kaapvaal and some other cratons, such as Yakutia in Siberia, for many years 449 

were considered representative of cratonic mantle. The high proportion of orthopyroxene (often >40 450 

wt.%) in these peridotite xenoliths is considered inconsistent with an origin as residues of melt 451 

extraction from primitive upper mantle compositions (e.g. Herzberg, 1993; Kelemen et al., 1998; 452 

Kesson and Ringwood, 1989; Walter, 1998).  453 

Following the discovery of depleted orthopyroxene-poor xenoliths from Greenland and some 454 

other cratons (Bernstein et al., 1998, 2007; Boyd and Canil, 1997; Larsen, 1982) it has become 455 

widely accepted that such high-Mg#, orthopyroxene poor harzburgites and dunites, and olivine + 456 

spinel inclusions in diamonds, can be viewed as archetypical cratonic mantle peridotite (e.g. 457 

Bernstein et al., 2007; Pearson and Wittig, 2008) formed by melt extraction of 37-45% (e.g. 458 

Herzberg, 2004). The modal composition of orthopyroxene-poor harzburgite and dunite cratonic 459 

xenoliths and their high Mg# suggest that they are residues of polybaric decompression melting 460 

starting at 4 to 6 GPa and extending to less than 3 GPa (Bernstein et al., 1998, 2006; Herzberg, 461 

2004; Kelemen et al., 1998; Walter, 2003). Depending on the nature of melting and melt extraction 462 
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(“equilibrium porous flow” versus “fractional melting”), this may be consistent with the observation 463 

that the trace element composition of SCLM xenoliths from several cratons suggests melting at a 464 

shallow depth (< 3GPa; e.g. Canil, 2004; Wittig et al., 2008). Alternatively, high Mg# and other 465 

indications of extreme melt depletion could be the cumulative result of multiple stages, each with a 466 

moderate degree of melt extraction. The uniform olivine Mg# of 92.6-92.8 of the cratonic high Mg# 467 

dunite may have been controlled by the exhaustion of orthopyroxene during melt extraction, 468 

limiting the maximum extent of melt depletion to about 40% in most cases, regardless of the 469 

tectonic environment (Bernstein et al., 2007). 470 

Likewise, there is a growing consensus that the orthopyroxene-rich nature of mantle peridotite 471 

beneath e.g. Kaapvaal, is a result of silica addition through melt-rock reaction, in which silica-rich 472 

melts react with a high-Mg# dunite protolith, perhaps in the hanging wall of a subduction zone 473 

(Gibson et al., 2008; Griffin et al., 2009; Kelemen et al., 1998; Kesson and Ringwood, 1989; Lee, 474 

2006; Pearson and Wittig, 2008; Rudnick et al., 1994; Lee et al., 2011). Indeed, the data and 475 

interpretations of Hanghøj et al. (2001) and Bernstein et al. (2007) suggest that Al as well as Si has 476 

been added to dunite protoliths in most cratonic harzburgites, and that some cratonic lherzolites are 477 

also refertilised dunites, modified by addition of Ca, Fe, Al, Si, and probably many other elements. 478 

Pressure and temperature at the time of xenolith entrainment can be calculated for many garnet-479 

bearing peridotite xenoliths. Pressures indicate depths of equilibration in the order of 2.5-7 GPa or 480 

about 75-220 km depth (e.g. Lee, 2006). Disregarding xenoliths with clear signs of metasomatic 481 

overprinting by a basaltic/basanitic or carbonatitic melt (i.e. presence of abundant diopside, 482 

amphibole, mica, carbonate, rutile etc.), there is a surprisingly constant and high Mg# of olivine in 483 

cratonic mantle, from 91.5-94.0 for most cratons, with averages spanning 92.0 to 93.0 (e.g. Gaul et 484 

al., 2000; Griffin et al., 2003; Pearson and Wittig, 2008), which do not correlate with depth of 485 

equilibration. These values are similar to depleted, garnet-free spinel peridotite xenoliths from the 486 

cratons, which also have average olivine Mg# of 92.5-92.8 (Bernstein et al., 2007).  487 
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As noted above, the bulk composition of most garnet-bearing cratonic mantle xenoliths reflects 488 

low pressure melting in the absence of garnet (e.g. Canil and Wei, 1992; Kelemen et al., 1998; 489 

Stachel et al., 1998) despite their deep residence at the time of entrainment. The trend of bulk 490 

compositions, with correlated Ca and heavy rare earth element concentrations, demonstrate that few 491 

if any cratonic peridotites contain residual garnet. Instead, most garnets in the cratonic upper mantle 492 

must be metamorphic in origin (Kelemen et al., 1998). This interpretation requires that low-pressure 493 

peridotite residues of decompression melting have been transported to depth at some later stage, 494 

possibly during collision of tectonic plates leading to stacking of the depleted and hence buoyant 495 

dunitic restite (e.g. Helmstaedt and Schulze, 1989; Gray and Pysklywec, 2010) or via ascent and 496 

accumulation of buoyant, Fe-poor peridotite diapirs (e.g., Oxburgh and Parmentier, 1977, 1978).  497 

In this light, the presence of garnet-bearing dunite with average olivine Mg# of 92.6 in the 498 

Qeqertaa suite, considered together with the garnet-free Ubekendt and Weidemann xenolith suites, 499 

shows that by Palaeoproterozoic time, the mantle beneath this part of the North Atlantic craton 500 

included regionally extensive high Mg# dunite extending from depths within the spinel peridotite 501 

stability field (Bernstein et al., 2006), deep into the garnet peridotite stability field, and indeed into 502 

the diamond stability field as documented by the presence of diamonds in the Qeqertaa dyke 503 

(Marmo et al., 2012). Along typical cratonic conductive geotherms (surface heat flow of 40-50 504 

mW/m
2
), this results in a vertical distribution of high-Mg# dunite over 150 km of the lithospheric 505 

mantle.  506 

 507 

6. Conclusions 508 

 509 

 We have shown that yet another SCLM xenolith suite from Greenland records consistently high 510 

Mg# in olivine. The Qeqertaa xenoliths have average olivine Mg# of 92.6 and a median value of 511 

92.8, which appears to be the dominating composition for SCLM in the North Atlantic craton. 512 
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 The presence of garnet in five xenoliths, suggests an equilibration pressure greater than 2.5 GPa 513 

(>75 km depth). The presence of diamonds in the Qeqertaa dyke demonstrates that the SCLM in 514 

this region must have been more than 150 km thick prior to the Palaeoproterozoic transport of the 515 

xenoliths into the crust.  516 

 The after emplacement in the crust, Qeqertaa xenoliths likely equilibrated at temperatures 517 

slightly above 600°C, as reflected in their spinel compositions, during amphibolite facies 518 

metamorphism in the crust. The Cr# versus Mg# trend of spinel from Qeqertaa is different than for 519 

xenoliths from Ubekendt Ejland and Wiedemann Fjord (Bernstein et al., 1998, 2006), although they 520 

probably shared a similar origin in highly depleted, residual dunites. 521 

Unlike spinel Mg#‟s, which are typically modified during metamorphism, spinel Cr#‟s can in 522 

some cases preserve primary, residual compositions.  Values of Fe
3+

# < 10 in some Qeqertaa  523 

spinels suggest that primary Cr# may have been preserved in a few cases. However, the Qeqertaa 524 

xenolith spinels plot along the metamorphic Cr# versus Mg# trend for chlorite-bearing peridotites 525 

identified by Evans and Frost (1975). Our samples do not contain chlorite, but they do contain 526 

metamorphic mica separating spinels from host olivine crystals. This suggests that even spinel Cr# 527 

can be modified by open behaviour during amphibolite facies metamorphism. Thus, care must be 528 

taken when interpreting the geological formation environment of metamorphic mantle rocks, in 529 

terms of their spinel composition. 530 

The surprisingly monotonous lithology in the 100% dunite Qeqertaa xenolith suite further 531 

supports the hypothesis that much of the cratonic mantle is composed of low pressure residues of 532 

high degrees of decompression melting, limited by the exhaustion of orthopyroxene (Bernstein et 533 

al., 2007). The Qeqertaa data are similar to xenolith data from other areas of the North Atlantic 534 

craton, as well as some other cratons as seen in Fig. 14, which supports the hypothesis that olivine-535 

rich dunites and harzburgites with Mg# around 92.8 represent the pristine composition of SCLM, 536 

prior to refertilization via melt-rock reaction. 537 
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Table 1. Electron microprobe data for the Qeqertaa xenolith suite. 774 

 775 

Figure captions: 776 

 777 

Fig. 1. Simplified geological map over the north-eastern Disko Bay region, showing the location of 778 

the island Qeqertaa in the northern Rodebay domain. Qeqertaa is situated a few kilometres south of 779 

the border of the Atâ tonalite. After Garde and Steenfelt (1999). 780 

 781 

Fig. 2. Examples of xenoliths and olivine megacrysts in the Qeqertaa xenolith suite. a) Sample 782 

#463715 xenoliths #1 and #2. Note lobate olivine xenolith (#1) with small (1 mm) rounded 783 

orthopyroxene inclusion and right hand side of xenolith fractured by carbonate-Fe-oxide veins. b) 784 

Sample #463728 showing spherical dunite xenoliths with small (<1 mm) orthopyroxene inclusion 785 

in xenolith #2. Note the carbonate (colourless mineral) filled pressure shadows between the two 786 

xenoliths. c) Sample #463711 with rounded garnet inclusion in dunite. Olivine grain is >20 mm. 787 

Garnet partly replaced by kelyphite. d) Sample #463713, showing typical dense clustering of small 788 

xenoliths. Xenolith #3 contains small spinel grains (0.1 mm), while the xenoliths #1, #2, and #4 are 789 

monomineralic dunite, apart from alteration minerals. Note darker (brown) olivine margins in 790 

xenolith #1. 791 

 792 
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Fig. 3. Xenolith qq-2 with typical coarse, protogranular texture demonstrating the lack of foliation 793 

or preferred orientation of the olivine grains (a) plane-polarized light; b) crossed-polarized light). 794 

The grain size range for olivine is large, from 2 mm to more than 15 mm. The sample also 795 

illustrates the nearly monomineralic nature of the xenolith suite from Qeqertaa. 796 

 797 

Fig. 4. Range in olivine compositions as reflected by Mg# (100xMg/(Mg+Fe
2+

)) and Ni content in 798 

ppm. Histogram shows data for 119 individual olivine xenoliths, while insert shows all olivine 799 

analyses. 800 

 801 

Fig. 5. Representative examples of microprobe traverses across six olivine grains, showing the 802 

variation in Mg# and Ni content. 803 

 804 

Fig. 6. a) Backscatter electron image of two spinel grains enclosed in a fractured olivine grain from 805 

sample #463722. The lines refer to microprobe analyses as presented merged in panels below. b) 806 

Cr# = (100xCr/(Cr+Al) and Mg# = (100xMg/Mg+Fe
2+

); d) Fe
3+

# = (100xFe
3+

/(Fe
3+

+Al+Cr) and 807 

Al# = (100xAl/(Fe
3+

+Al+Cr)). Note the weak zoning only in the outer few tens of micrometres and 808 

TiO2 and NiO around detection limit. 809 

 810 

Fig. 7. a) Backscatter electron image of zoned spinel from sample #qq-4b, with lines referring to 811 

microprobe analyses as presented in panels below (line-1 is a traverse in olivine and presented in 812 

Fig. 5f). b)-d) show chemical variation along the analytical traverse b-c. Note the strong zoning 813 

from a relatively homogeneous core to a narrow rim with changes in all depicted chemical 814 

parameters. Also note the chemical modification along the crack in the spinel grains, perpendicular 815 

to the analytical traverse. 816 

 817 
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Fig. 8. a) Backscatter electron image of zoned spinel from sample qq-3, with line a-b referring to 818 

microprobe analyses as presented in panels below. b)-d) show chemical variation along the 819 

analytical traverse b-c (see caption to Fig. 6 for chemical parameters). The data reveals strong 820 

zoning from a relatively homogeneous core to a narrow rim with changes in all major element 821 

parameters. For the minor elements, Zn, Ni and Ti, there is little variation from core to rim (d).  822 

 823 

Fig. 9. a) Backscatter electron image of zoned spinel from sample qq-4b, with line a-b referring to 824 

microprobe analyses as presented in panels below. b)-d) show chemical variation along analytical 825 

traverse a-b (see caption to Fig. 6 for chemical parameters). There is relatively little variation along 826 

the traverse, compared to the less altered spinel grains in Figs. 6-8. Note that Cr# is at 100 in b) and 827 

Al# is at 0 in c). 828 

 829 

Fig. 10. Chemical variation in terms of Cr# and Fe
3+

# comparing all spinel analyses from Qeqertaa 830 

xenolith suite with compositions of spinel in mantle xenoliths from Ubekendt Ejland (UE - dark 831 

grey field), West Greenland and Wiedemann Fjord (W – light coloured field), East Greenland (data 832 

from Bernstein et al., 1998, 2006 and unpublished data). Qeqertaa spinel data lying in one of the 833 

fields with Fe
3+

# less than 10 may have retained their primary Cr#, while those lying outside have 834 

been substantially modified during metamorphism. 835 

 836 

Fig. 11. Spinel from Qeqertaa xenoliths, with the most altered compositions removed (see text and 837 

Fig. 10) in terms of Cr# versus Mg#, compared to spinel from Ubekendt Ejland (UE) and 838 

Wiedemann Fjord (W) suites. Qeqertaa xenoliths almost span the entire range in Cr#, but have 839 

substantially lower Mg#, which is a reflection of lower equilibration temperatures compared to the 840 

Ubekendt and Weidemann suites. 841 

 842 
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Fig. 12. Composition of orthopyroxene (in the only three samples found to contain orthopyroxene), 843 

in terms of Cr# and Mg#. Also shown are compositional field for orthopyroxene from Greenlandic 844 

garnet-bearing xenoliths (Sarfartoq-Maniitsoq region; Garrit, 2000) and from garnet-free, spinel-845 

bearing xenoliths from Ubekendt Ejland, Wiedemann Fjord and Sarfartoq-Maniitsoq (Bernstein et 846 

al., 1998, 2006; Garrit, 2000, respectively). Only orthopyroxene with Al2O3>0.2 wt.% is included in 847 

the bodies of data for garnet-free xenoliths. Some orthopyroxene with Al2O3<0.2 wt.% show a 848 

much greater variation in Cr# (stippled field), which is possibly an artefact of poor analytical 849 

accuracy close to the detection limit. 850 

 851 

Fig. 13. Spinel compositions from analytical traverses by electron microprobe in five spinel grains 852 

from the Qeqertaa xenolith suite, compared with unaltered spinel in mantle xenoliths from 853 

Ubekendt Ejland, West Greenland (Bernstein et al., 2006). The three components represent atomic 854 

proportions referring to the spinel formula, with Fe
3+

 calculated assuming stochiometry. 855 

 856 

Fig. 14. Cr# in spinel versus Mg# in olivine from different cratonic xenolith suites. Qeqertaa 857 

xenoliths plot on top of this array and their Cr# covers the entire range. Diamond inclusions on the 858 

other hand are restricted to Cr# around 90. The background data are from the literature as follows: 859 

Ubekendt (Bernstein et al., 2006), diamond inclusions (Stachel et al., 1998), Tanzania (Rudnick et 860 

al., 1994), Kaapvaal (Herzberg, 2004), Sarfartoq (Bizzarro and Stevenson, 2003; Garrit, 2000), 861 

Wiedemann (Bernstein et al., 1998) and OSMA (Arai, 1994). 862 
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