10 research outputs found

    Complementary-relationship-based evapotranspiration mapping (CREMAP) technique for Hungary

    Get PDF

    A calibration-free evapotranspiration mapping (CREMAP) technique

    Get PDF

    Experimental implementation of a Quality-by-Control (QbC) framework using a mechanistic PBM-based nonlinear model predictive control involving chord length distribution measurement for the batch cooling crystallization of L-ascorbic acid

    Get PDF
    L-ascorbic acid is synthetized in large industrial scale from glucose and marketed as an immune system strengthening agent and anti-oxidant ingredient. The overall yield of conversion of the precursor glucose to L-ascorbic acid is limited, therefore the crystallization is a critically important step of the L-ascorbic acid production from economic point of view. It is widely accepted that the crystal size distribution (CSD) influences numerous relevant macroscopic properties of the final crystalline product and it also significantly affects the downstream operations. The present paper discusses the chord length distribution (CLD, which is directly related to the CSD) control, during the crystallization of L-ascorbic acid from aqueous solution. Batch crystallization process is employed, which is the classical, and still dominant, operation in fine chemical and pharmaceutical industries. A comparative experimental study of two state-of-the-art Quality-by-Control (QbC) based crystallization design approaches are presented: (1) a model-free QbC based on direct nucleation control (DNC) and (2) a model-based QbC using a novel nonlinear model predicative control (NMPC) framework. In the first investigation, the DNC, a process analytical technology based state-of-the-art model free control strategy, is applied. Although, DNC requires minimal preliminary system information and often provides robust process control, due to the unusual crystallization behavior of L-ascorbic acid, it leads to long batch times and oscillatory operation. In a second study the benefits of model-based QbC approach are demonstrated, based on using a NMPC approach. A population balance based crystallization process model is built and calibrated by estimating the nucleation and growth kinetics from concentration and CLD measurements. A projection based CSD to CLD forward transformation is used in the estimation of nucleation and growth kinetics. For robustness and adaptive behavior, the NMPC is coupled with a growing horizon state estimator, which is aimed to continuously improve the model by re-adjusting the kinetic constants. The study demonstrates that the model-based QbC framework can lead to rapid and robust crystallization process development with the NMPC system presenting good control behavior under significant plant model mismatch (PMM) conditions

    Real time image processing based on-line feedback control system for cooling batch crystallization

    Get PDF
    The direct nucleation control (DNC) is a process analytical technique (PAT) based model free feedback control strategy for batch and continuous crystallization processes, which has been successfully applied in numerous cases. The basic principle of DNC is the use of controlled dissolution cycles to control a measurement directly related to the particle number in the system. During the DNC, in the case of cooling crystallization fines are dissolved by repeated heating-cooling loops. In this context, the controlled variable is the (relative) particle number, which is manipulated using a feedback control approach through the temperature. The particle number is traditionally measured with focused beam reflectance measurement (FBRM), however other PAT tools can also be employed in a similar feedback control setup. Often crystallization processes are also monitored by real-time imaging systems. In the current work a novel DNC setup is proposed in which microscopy images are captured and processed by the means of image analysis in real time. The images are used to extract the relative particle number, which is controlled using the DNC framework. The robustness of the new image analysis based direct nucleation control (IA-DNC) is presented via three case studies with materials having different crystallization properties. The IA-DNC approach uses a Particle Vision probe although other in situ or in line imaging systems can also be used in the framework. The systems are monitored with FBRM for comparison purposes. The setup achieved stable, converged control in most cases and is demonstrated that the IA-DNC has several advantages over the classical FBRM based DNC. The IA-DNC can also be used for real time feedback control of crystal shape

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Complementary-relationship-based evapotranspiration mapping (CREMAP) technique for Hungary

    Get PDF
    corecore