27 research outputs found

    Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles

    Get PDF
    <div><p>Recent development of benzoxaborole-based chemistry gave rise to a collection of compounds with great potential in targeting diverse infectious diseases, including human African Trypanosomiasis (HAT), a devastating neglected tropical disease. However, further medicinal development is largely restricted by a lack of insight into mechanism of action (MoA) in pathogenic kinetoplastids. We adopted a multidisciplinary approach, combining a high-throughput forward genetic screen with functional group focused chemical biological, structural biology and biochemical analyses, to tackle the complex MoAs of benzoxaboroles in <i>Trypanosoma brucei</i>. We describe an oxidative enzymatic pathway composed of host semicarbazide-sensitive amine oxidase and a trypanosomal aldehyde dehydrogenase TbALDH3. Two sequential reactions through this pathway serve as the key underlying mechanism for activating a series of 4-aminomethylphenoxy-benzoxaboroles as potent trypanocides; the methylamine parental compounds as pro-drugs are transformed first into intermediate aldehyde metabolites, and further into the carboxylate metabolites as effective forms. Moreover, comparative biochemical and crystallographic analyses elucidated the catalytic specificity of TbALDH3 towards the benzaldehyde benzoxaborole metabolites as xenogeneic substrates. Overall, this work proposes a novel drug activation mechanism dependent on both host and parasite metabolism of primary amine containing molecules, which contributes a new perspective to our understanding of the benzoxaborole MoA, and could be further exploited to improve the therapeutic index of antimicrobial compounds.</p></div

    The 4D nucleome project

    Get PDF

    SPORTS1.0: A Tool for Annotating and Profiling Non-coding RNAs Optimized for rRNA- and tRNA-derived Small RNAs

    Get PDF
    High-throughput RNA-seq has revolutionized the process of small RNA (sRNA) discovery, leading to a rapid expansion of sRNA categories. In addition to the previously well-characterized sRNAs such as microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and small nucleolar RNA (snoRNAs), recent emerging studies have spotlighted on tRNA-derived sRNAs (tsRNAs) and rRNA-derived sRNAs (rsRNAs) as new categories of sRNAs that bear versatile functions. Since existing software and pipelines for sRNA annotation are mostly focused on analyzing miRNAs or piRNAs, here we developed the sRNA annotation pipeline optimized for rRNA- and tRNA-derived sRNAs (SPORTS1.0). SPORTS1.0 is optimized for analyzing tsRNAs and rsRNAs from sRNA-seq data, in addition to its capacity to annotate canonical sRNAs such as miRNAs and piRNAs. Moreover, SPORTS1.0 can predict potential RNA modification sites based on nucleotide mismatches within sRNAs. SPORTS1.0 is precompiled to annotate sRNAs for a wide range of 68 species across bacteria, yeast, plant, and animal kingdoms, while additional species for analyses could be readily expanded upon end users’ input. For demonstration, by analyzing sRNA datasets using SPORTS1.0, we reveal that distinct signatures are present in tsRNAs and rsRNAs from different mouse cell types. We also find that compared to other sRNA species, tsRNAs bear the highest mismatch rate, which is consistent with their highly modified nature. SPORTS1.0 is an open-source software and can be publically accessed at https://github.com/junchaoshi/sports1.0. Keywords: Small RNA, RNA-seq data analysis, tsRNA, rsRNA, Annotation pipelin
    corecore