22 research outputs found

    Dynamics of a linear oscillator connected to a small strongly non-linear hysteretic absorber

    Full text link
    The present investigation deals with the dynamics of a two-degrees-of-freedom system which consists of a main linear oscillator and a strongly nonlinear absorber with small mass. The nonlinear oscillator has a softening hysteretic characteristic represented by a Bouc-Wen model. The periodic solutions of this system are studied and their calcu- lation is performed through an averaging procedure. The study of nonlinear modes and their stability shows, under specific conditions, the existence of localization which is responsible for a passive irreversible energy transfer from the linear oscillator to the nonlinear one. The dissipative effect of the nonlinearity appears to play an important role in the energy transfer phenomenon and some design criteria can be drawn regarding this parameter among others to optimize this energy transfer. The free transient response is investigated and it is shown that the energy transfer appears when the energy input is sufficient in accordance with the predictions from the nonlinear modes. Finally, the steady-state forced response of the system is investigated. When the input of energy is sufficient, the resonant response (close to nonlinear modes) experiences localization of the vibrations in the nonlinear absorber and jump phenomena

    Forced and self-excited oscillations of an optomechanical cavity

    Get PDF
    We experimentally study forced and self oscillations of an optomechanical cavity which is formed between a fiber Bragg grating that serves as a static mirror and between a freely suspended metallic mechanical resonator that serves as a moving mirror. In the domain of small amplitude mechanical oscillations, we find that the optomechanical coupling is manifested as changes in the effective resonance frequency, damping rate and cubic nonlinearity of the mechanical resonator. Moreover, self oscillations of the micromechanical mirror are observed above a certain optical power threshold. A comparison between the experimental results and a theoretical model that we have recently presented yields a good agreement. The comparison also indicates that the dominant optomechanical coupling mechanism is the heating of the metallic mirror due to optical absorption.Comment: 11 pages, 6 figure

    Cascades of subharmonic stationary states in strongly non-linear driven planar systems

    Full text link
    The dynamics of a one-degree of freedom oscillator with arbitrary polynomial non-linearity subjected to an external periodic excitation is studied. The sequences (cascades) of harmonic and subharmonic stationary solutions to the equation of motion are obtained by using the harmonic balance approximation adapted for arbitrary truncation numbers, powers of non-linearity, and orders of subharmonics. A scheme for investigating the stability of the harmonic balance stationary solutions of such a general form is developed on the basis of the Floquet theorem. Besides establishing the stable/unstable nature of a stationary solution, its stability analysis allows obtaining the regions of parameters, where symmetry-breaking and period-doubling bifurcations occur. Thus, for period-doubling cascades, each unstable stationary solution is used as a base solution for finding a subsequent stationary state in a cascade. The procedure is repeated until this stationary state becomes stable provided that a stable solution can finally be achieved. The proposed technique is applied to calculate the sequences of subharmonic stationary states in driven hardening Duffing's oscillator. The existence of stable subharmonic motions found is confirmed by solving the differential equation of motion numerically by means of a time-difference method, with initial conditions being supplied by the harmonic balance approximation.Comment: 37 pages, 11 figures, revised material on chaotic motio

    Qualitative Analysis of Forced Response of Blisks With Friction Ring Dampers

    Full text link
    A damping strategy for blisks (integrally bladed disks) of turbomachinery involving a friction ring is investigated. These rings, located in grooves underside the wheel of the blisks, are held in contact by centrifugal loads and the energy is dissipated when relative motions between the ring and the disk occur. A representative lumped parameter model of the system is introduced and the steady-state nonlinear response is derived using a multi-harmonic balance method combined with an AFT procedure where the friction force is calculated in the time domain. Numerical simulations are presented for several damper characteristics and several excitation configurations. From these results, the performance of this damping strategy is discussed and some design guidelines are given
    corecore