14 research outputs found

    High-Permittivity Polysiloxanes for Bright, Stretchable Electroluminescent Devices

    No full text
    Stretchable alternating current electroluminescent (ACEL) devices have a bright future in wearable electronics and soft robotics. Still, their market application is hindered by high operating voltages. The voltage can be reduced by increasing the relative permittivity of the dielectric elastomer in the emissive layer. Here, a fluorine-free high-permittivity silicone elastomer functionalized with cyanopropyl side groups, specially designed for application in stretchable ACEL devices, is introduced. The polar silicone elastomer exhibits excellent mechanical properties and a dielectric permittivity four times higher than commercial PDMS. Light-emitting devices based on the polar elastomer reach 7.5 times higher maximum luminance at the same electric field than PDMS-based devices and turn on at a 50% lower electric field. Besides, the polar elastomer-based devices perform better than all materials tested in literature in achieving high luminance at low electric fields. Stretchable ACEL devices are built from the polar elastomer which shows bright and uniform light emission and can be operated up to 50% strain. The high-permittivity silicones are promising materials for stretchable ACEL devices and can help their breakthrough to market application by overcoming the drawback of high operating voltages.ISSN:2195-107

    A novel homozygous splicing mutation of CASC5 causes primary microcephaly in a large Pakistani family

    No full text
    Primary microcephaly is a disorder characterized by a small head and brain associated with impaired cognitive capabilities. Mutations in 13 different genes encoding centrosomal proteins and cell cycle regulators have been reported to cause the disease. CASC5, a gene encoding a protein important for kinetochore formation and proper chromosome segregation during mitosis, has been suggested to be associated with primary microcephaly-4 (MCPH4). This was based on one mutation only and circumstantial functional evidence. By combining homozygosity mapping and whole-exome sequencing in an MCPH family from Pakistan, we identified a second mutation (NM_170589.4;c.6673-19T > A) in CASC5. This mutation induced skipping of exon 25 of CASC5 resulting in a frameshift and the introduction of a premature stop codon (p.Met2225Ilefs*7). The C-terminally truncated protein lacks 118 amino acids that encompass the region responsible for the interaction with the hMIS12 complex, which is essential for proper chromosome alignment and segregation. Furthermore, we showed a down-regulation of CASC5 mRNA and reduction of the amount of CASC5 protein by quantitative RT-PCR and western blot analysis, respectively. As a further sign of functional deficits, we observed dispersed dots of CASC5 immunoreactive material outside the metaphase plate of dividing patient fibroblasts. Normally, CASC5 is a component of the kinetochore of metaphase chromosomes. A higher mitotic index in patient cells indicated a mitotic arrest in the cells carrying the mutation. We also observed lobulated and fragmented nuclei as well as micronuclei in the patient cells. Moreover, we detected an altered DNA damage response with higher levels of gamma H2AX and 53BP1 in mutant as compared to control fibroblasts. Our findings substantiate the proposed role of CASC5 for primary microcephaly and suggest that it also might be relevant for genome stability

    CDK6 associates with the centrosome during mitosis and is mutated in a large Pakistani family with primary microcephaly

    No full text
    Autosomal recessive primary microcephaly (MCPH) is characterized by reduced head circumference, reduction in the size of the cerebral cortex with otherwise grossly normal brain structure and variable intellectual disability. MCPH is caused by mutations of 11 different genes which code for proteins implicated in cell division and cell cycle regulation. We studied a consanguineous eight-generation family from Pakistan with ten microcephalic children using homozygosity mapping and found a new MCPH locus at HSA 7q21.11-q21.3. Sanger sequencing of the most relevant candidate genes in this region revealed a homozygous single nucleotide substitution c.589G>A in CDK6, which encodes cyclin-dependent kinase 6. The mutation changes a highly conserved alanine at position 197 into threonine (p.Ala197Thr). Post hoc whole-exome sequencing corroborated this mutation's identification as the causal variant. CDK6 is an important protein for the control of the cell cycle and differentiation of various cell types. We show here for the first time that CDK6 associates with the centrosome during mitosis; however, this was not observed in patient fibroblasts. Moreover, the mutant primary fibroblasts exhibited supernumerary centrosomes, disorganized microtubules and mitotic spindles, an increased centrosome nucleus distance, reduced cell proliferation and impaired cell motility and polarity. Upon ectopic expression of the mutant protein and knockdown of CDK6 through shRNA, we noted similar effects. We propose that the identified CDK6 mutation leads to reduced cell proliferation and impairs the correct functioning of the centrosome in microtubule organization and its positioning near the nucleus which are key determinants during neurogenesis

    Mutations in CKAP2L, the human homolog of the mouse Radmis gene, cause Filippi syndrome.

    Get PDF
    Filippi syndrome is a rare, presumably autosomal-recessive disorder characterized by microcephaly, pre- and postnatal growth failure, syndactyly, and distinctive facial features, including a broad nasal bridge and underdeveloped alae nasi. Some affected individuals have intellectual disability, seizures, undescended testicles in males, and teeth and hair abnormalities. We performed homozygosity mapping and whole-exome sequencing in a Sardinian family with two affected children and identified a homozygous frameshift mutation, c.571dupA (p.Ile191Asnfs∗6), in CKAP2L, encoding the protein cytoskeleton-associated protein 2-like (CKAP2L). The function of this protein was unknown until it was rediscovered in mice as Radmis (radial fiber and mitotic spindle) and shown to play a pivotal role in cell division of neural progenitors. Sanger sequencing of CKAP2L in a further eight unrelated individuals with clinical features consistent with Filippi syndrome revealed biallelic mutations in four subjects. In contrast to wild-type lymphoblastoid cell lines (LCLs), dividing LCLs established from the individuals homozygous for the c.571dupA mutation did not show CKAP2L at the spindle poles. Furthermore, in cells from the affected individuals, we observed an increase in the number of disorganized spindle microtubules owing to multipolar configurations and defects in chromosome segregation. The observed cellular phenotypes are in keeping with data from in vitro and in vivo knockdown studies performed in human cells and mice, respectively. Our findings show that loss-of-function mutations in CKAP2L are a major cause of Filippi syndrome

    Two patients with complete defects in interferon gamma receptor-dependent signaling.

    Get PDF
    Contains fulltext : 52114.pdf (publisher's version ) (Closed access)Unusual susceptibility to mycobacterial infections can be caused by deleterious mutations in genes that encode the interferon-gamma receptor 1 chain. Such mutations hamper the activation of macrophages by a type 1 immune response and result in enhanced survival of intracellular pathogens. We here report two patients with unusual mycobacterial infections, both diagnosed with homozygous deleterious interferon-gamma receptor 1 gene mutations. Patient 1 became ill after Bacillus Calmette-Guerin vaccination at the age of 9 months and died at the age of 18 months. She carried a homozygous C71Y mutation in the extracellular part of the mature interferon-gamma receptor 1 protein, resulting in the lack of detectable protein expression and absence of interferon-gamma dependent signaling. Patient 2 became ill at the age of 3 years, is still alive at 19 years of age, and has suffered from five successive infection episodes with atypical mycobacteria. A homozygous splice-site mutation in intron 3 was identified, resulting in the deletion of exon 3 at the mRNA level and consequently a truncated interferon-gamma receptor 1 protein with absence of the transmembrane domain. Protein expression and interferon-gamma dependent signaling were not detectable
    corecore