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Mutations in CKAP2L, the Human Homolog
of the Mouse Radmis Gene, Cause Filippi Syndrome
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Filippi syndrome is a rare, presumably autosomal-recessive disorder characterized by microcephaly, pre- and postnatal growth failure,

syndactyly, and distinctive facial features, including a broad nasal bridge and underdeveloped alae nasi. Some affected individuals

have intellectual disability, seizures, undescended testicles in males, and teeth and hair abnormalities. We performed homozygosity

mapping and whole-exome sequencing in a Sardinian family with two affected children and identified a homozygous frameshift

mutation, c.571dupA (p.Ile191Asnfs*6), in CKAP2L, encoding the protein cytoskeleton-associated protein 2-like (CKAP2L). The func-

tion of this protein was unknown until it was rediscovered in mice as Radmis (radial fiber and mitotic spindle) and shown to play a

pivotal role in cell division of neural progenitors. Sanger sequencing of CKAP2L in a further eight unrelated individuals with clinical

features consistent with Filippi syndrome revealed biallelic mutations in four subjects. In contrast to wild-type lymphoblastoid cell lines

(LCLs), dividing LCLs established from the individuals homozygous for the c.571dupA mutation did not show CKAP2L at the spindle

poles. Furthermore, in cells from the affected individuals, we observed an increase in the number of disorganized spindle microtubules

owing to multipolar configurations and defects in chromosome segregation. The observed cellular phenotypes are in keeping with data

from in vitro and in vivo knockdown studies performed in human cells and mice, respectively. Our findings show that loss-of-function

mutations in CKAP2L are a major cause of Filippi syndrome.
Filippi syndrome (MIM 272440), also known as syndactyly

type 1withmicrocephaly and intellectual disability, belongs

to thegroupof craniodigital syndromes.Affected individuals

have short stature; microcephaly; a characteristic facial

appearance with a bulging forehead, broad and prominent

nasalbridge, anddiminished alar flare; syndactyly; and intel-

lectual disability as major phenotypic features.1 The first

descriptionof threeofeight siblingsborn tohealthynoncon-

sanguineousparents inan Italian familydefinedapreviously

unrecognized phenotype of facial dysmorphism, micro-

cephaly, intellectual disability, cryptorchidism, pre- and

postnatal growth retardation, speech impairment, syndac-

tyly of the third and fourth fingers, clinodactyly of the fifth

finger, and syndactyly of the second to fourth toes.2 Subse-

quent reported cases expanded the phenotypic spectrum to

include visual disturbance, polydactyly, seizures, epilepsy,

and ectodermal abnormalities, such as nail hypoplasia,

long eyelashes, hirsutism, andmicrodontia.3–8 To date, a to-
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tal of 28 affected individuals from 20 families have been

reported worldwide.7–10 An autosomal-recessivemode of in-

heritance has beenproposed on the basis of the similar num-

ber of affected male (19) and female (9) children observed

in nonconsanguineous and consanguineous families.8,9 A

range of investigations—including karyotyping, telomere

analyses, fluorescence in situ hybridization for micro-

deletions at 22q11.2 and 16p13.3, and microarray-based

comparative genomic hybridization (array CGH)—did

not reveal a specific genetic explanation.7,8,11,12 Recently,

a female with a Filippi-like phenotype was reported with a

heterozygous 10.4 Mb microdeletion in chromosomal

region 2q24.3–q31.1.13 To our knowledge, a next-genera-

tion-sequencing-based approach has not been performed

to elucidate the genetic cause of Filippi syndrome.9

Here, we report on a combined linkage andwhole-exome

sequencing (WES) approach applied to a Filippi-syndrome-

affected family from Sardinia, an island with a long history
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Figure 1. Clinical Presentation of Filippi-
Syndrome-Affected Individuals with Mu-
tations in CKAP2L
Affected individual FP1-1 and his brother,
FP1-3, are shown at the age of 3 years
and 5 months. FP1-1 was reported previ-
ously as the first child born to an Italian
family.8 Note the facial abnormalities and
cutaneous syndactyly of the fingers and
toes. Although the clinical presentation is
very similar, the broad nasal bridge and
underdeveloped alae nasi seem to be
more pronounced in the younger brother
(FP1-3), whereas the cutaneous syndactyly
of the fingers is more severe in the older
brother (FP1-1). In the bottom row,
affected individual FP5-1 is shown at the
age of 16 years. He is the first child of dou-
ble first cousins of Pakistani origin and was
reported previously at the age of 5 years
and 4months.7 Earlier in his life, he under-
went a surgical intervention to release his
cutaneous syndactyly of the third and
fourth fingers of both hands. Parents pro-
vided written consent for the publication
of photographs of their children.
of population isolation. Since the time of the first report on

this family, a second affected childwas born to theparents.8

The second child, also aboy, presentswith anearly identical

phenotype to thatofhis older brother (Figure1 andTable1).

Standard cytogenetic analysis, array CGH, and sequencing

of GJA1 (MIM 121014) in the proband (FP1-1) did not

reveal any genomic abnormalities.8 Hence, we performed

genome-wide linkage analysis and WES to determine the

genetic cause underlying the disorder in family FP1 after

informed consent was given by the parents. We genotyped

DNA from the proband, his brother, and his parents by us-

ing the Illumina HumanCoreExome-12 v.1.1 BeadChip ac-

cording to themanufacturer’s protocol.We performed link-

age analysis by assuming autosomal-recessive inheritance,

full penetrance, consanguinity of second-degree cousins,

and a disease allele frequency of 0.0001. Multipoint LOD

scores were calculated with the program ALLEGRO.14 All

data handling was done with the graphical user interface

ALOHOMORA.15 We identified several regions of homozy-

gosity by descentwith amaximumparametric LOD score of

2.4 on chromosomes 1, 2, 5, 7, and 16 (Figure S1A, available

online). At the same time, DNA samples of both children

were subjected toWES. Enrichment, sequencing, readmap-

ping, and variant calling were carried out as previously

described.16 The fraction of target regions covered R303

for affected individuals FP1-1 and FP1-3 exceeded 82%

and 87%, respectively. Filtering and variant prioritization

were performedwith theCologneCenter forGenomicsVar-

bank database and analysis tool kit (see Web Resources). In

particular, we filtered for rare homozygous variants shared

by both affected individuals by using the filter parameter

settings documented in Table S1. This resulted in a single

autosomal variant, namely CKAP2L (RefSeq accession

number NM_152515.3) frameshift mutation c.571dupA
The American
(p.Ile191Asnfs*6), caused by an insertion of an additional

adenine in exon 4 of CKAP2L. This is consistent with the

linkage data given thatCKAP2L is in a small linkage interval

on chromosome 2 (Figure S1B). Haplotype analysis uncov-

ered a shared homozygous region of 0.93 Mb (Figure S1C).

The pathogenic nature of the protein-truncating mutation

is further supported by its absence from dbSNP build 135,

1000Genomes build 20110521, NHLBI Exome Sequencing

Project Exome Variant Server (EVS) build ESP6500, and our

in-house database containing variants from >1,600

exomes. Moreover, segregation analysis of the mutation

c.571dupA by Sanger sequencing of DNA samples from all

available members of family FP1 confirmed an autosomal-

recessive mode of inheritance (Figure S2A).

We sequenced CKAP2L in eight additional Filippi-syn-

drome-affected families, one from Italy (FP2), one from

Poland (FP3), one from Turkey (FP7), and five from the UK

(FP4–FP6, FP8, and FP9) (Table 1). FP2, FP6, FP7, and FP8

havenotpreviouslybeendescribed; all otherswere reported

previously.7,9,17 For Sanger sequencing of CKAP2L, primers

were designed to encompass all exons and adjacent splice

sites. Initially, we sequenced only theDNAof the index per-

son of each family. When a mutation was found, all avail-

able family members were tested for this particular variant.

We identified five additional mutations in four of the

further eight families affected by Filippi syndrome. In the

FP5 index individual, a boy born to consanguineous par-

ents from Pakistan,7 we identified in the first codon of

CKAP2L homozygous mutation c.2T>C (p.Met1?), which

consequentially cannot be used as translational start site

(Figure S2B). In FP7, a boy born as the second child of a

healthy consanguineous Turkish couple was diagnosed

with a Filippi-like syndrome. He showed pre- and postnatal

growth reduction, moderate to severe speech impairment,
Journal of Human Genetics 95, 622–632, November 6, 2014 623



Table 1. Clinical Findings of Filippi-Syndrome-Affected Individuals with and without CKAP2L Mutations

Individual

FP1-1
(Brother
of FP1-3)

FP1-3
(Brother
of FP1-1) FP2-1 FP3-1 FP4-1 FP5-1 FP6-1 FP7-1 FP8-1

FP9-1
(Brother
of FP9-3)

FP9-3
(Brother
of FP9-1)

Gender male male female male male male male male female male male

Ancestry Italian Italian Italian Polish European Pakistani Asian Turkish Asian English English

Consanguinity
of parents

no no no no no yes (double
first cousins)

yes (second
cousins)

yes (first cousins) yes no no

CKAP2L
mutations

c.[571dupA];
[571dupA]

c.[571dupA];
[571dupA]

no no no c.[2T>C];
[2T>C]

no c.[554_555delAA];
[554_555delAA]

c.[157_485del];
[157_485del]

c.[78_79insTT];
[751delA]

not analyzed

Measurements

Prenatal IUGR yes yes no no no yes yes yes yes yes yes

Gestational
age at birth

34 weeks 38 weeks 41 weeks 37 weeks 39 weeks 31 weeks 36 weeks 39 weeks 35 weeks 37 weeks 38 weeks

Length at
birth (SD)

�2.0 NR �2.0 þ0.9 NR NR �2.0 �1.3 NR NR NR

Weight at
birth (SD)

�2.0 �2.0 �0.7 �0.5 þ1.8 �1.4 �2.0 �2.0 �3.5 �3.6 �2.8

OFC at
birth (SD)

�3.5 NR �1.8 �2.3 NR �2.4 �1.6 �2.0 �4.6 NR �2.9

Age at
examination

2 years,
8 months

3 years,
5 months

12 years 3 years,
6 months

10 years,
6 months

16 years,
3 months

3 years 1 years,
11 months

10 years,
6 months

2 years,
10 months

1 years,
7 months

Height at
examination
(SD)

�5.5 �1.4 �3.3 �0.5 <�2.0 �2.8 �2.0 �3.3 �2.0 �2.6 �2.4

Weight at
examination
(SD)

�5.5 �2.0 �1.6 �1.9 <�2.0 �0.06 �2.7 �2.1 �2.0 NR NR

OFC at
examination
(SD)

�10.0 �4.0 �2.0 �2.8 �3.8 �7.0 �1.4 �4.1 �5.5 �2.9 �3.0

Neurological Features

Intellectual
disability

severe no moderate severe mild to
moderate

mild to
moderate

moderate moderate mild to
moderate

mild to
moderate

mild to
moderate

Speech
impairment

severe mild moderate severe moderate moderate mild moderate to
severe

mild to
moderate

mild to
moderate

mild

Epileptic
seizures

yes no yes no no yes no no no no no

(Continued on next page)
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Table 1. Continued

Individual

FP1-1
(Brother
of FP1-3)

FP1-3
(Brother
of FP1-1) FP2-1 FP3-1 FP4-1 FP5-1 FP6-1 FP7-1 FP8-1

FP9-1
(Brother
of FP9-3)

FP9-3
(Brother
of FP9-1)

Facial Dysmorphism

Broad nasal
bridge or
telecanthus

yes yes yes yes yes no no yes no yes yes

Prominent
nasal root
or bridge

yes yes no yes yes yes no no yes no no

Underdeveloped
alae nasi

yes yes no yes no yes no yes yes yes yes

Hands and Feet

Syndactyly
of fingers

bilateral 3 and
4 (cutaneous)

bilateral
3 and 4
(cutaneous)

bilateral 3–5
(cutaneous),
bilateral 3 and
4 (osseous; distal
phalanges)

sinistral 3 and
4 (cutaneous)

bilateral 3 and
4 (cutaneous)

bilateral 3 and
4 (cutaneous)

bilateral 3 and
4 (cutaneous)

no bilateral 3 and
4 (cutaneous)

bilateral 3 and
4 (cutaneous)

no

Syndactyly
of toes

bilateral 2–4
(cutaneous)

bilateral 2–4
(cutaneous)

bilateral 2 and
3 (cutaneous)

bilateral 4 and
5 (cutaneous),
sinistral 1 and
2 (cutaneous)

bilateral 2 and
3 (cutaneous)

sinistral 2–5
(cutaneous),
dextral 2–4
(cutaneous)

no bilateral 2 and 3
(cutaneous)

bilateral 2–4
(cutaneous)

bilateral 2–4
(cutaneous)

bilateral 2 and
3 (cutaneous)

Hypoplasia
and/or aplasia
of phalanges

hypoplasia of
fifth toes

hypoplasia
of fifth toes

hypoplasias of
fingers and toes
(mainly middle
and distal
phalanges)

aplasias: sinistral
second finger
(middle and
distal
phalanges),
sinistral third
toe (total);
hypoplasias:
dextral toes
(multiple
phalanges)

no hypoplasia of
fifth toes

no no no no no

Clinodactyly yes (fifth
fingers)

no yes (fifth
fingers)

no no yes (fifth fingers) no yes (fifth fingers) no no no

Ectodermal Abnormalities

Hair anomalies no double parietal
hair whorl

thin thin coarse, different
colors,
abnormal
growth pattern

hypertrichosis,
abnormal
frontal
growth pattern

mild
hypertrichosis

sparse hair,
abnormal
growth
pattern

no NR NR

Hypodontia no no yes (agenesis
of roots)

no no yes no no no NR NR
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sparse hair, cryptorchidism, and bilateral cutaneous syn-

dactyly of the second and third toes, but interestingly no

syndactyly of the fingers (Table 1). Sequencing of his DNA

revealed a homozygous 2 bp deletion (c.554_555delAA)

causing a frameshift (p.Lys185Argfs*11) introducing a pre-

mature termination codon (PTC). Both parents are hetero-

zygous for this mutation (Figure S2C). In family FP8, a girl

born to consanguineous Asian parents, we identified a ho-

mozygous 329 bp deletion (c.157_485del) (Figure S2D).

The affected individual showed pre- and postnatal growth

retardation and speech impairment; she started walking at

the age of 3 years and lacked cognitive skills. She had recur-

rent ear and chest infections requiring repeated treatment

with antibiotics, but her hearing and vision were normal.

On re-examination at the age of 8 years, she was relatively

small and had skin syndactyly of the second, third, and

fourth toes and third and fourth fingers. She had a promi-

nent and abnormally shaped nose and serrated incisors.

Her clinical data regarding height and weight are summa-

rized in Table 1. Mutation c.157_485del deletes the 50 end
of exon 4, the largest exon of CKAP2L. Similar to the muta-

tiondescribed above for family FP1, the 329 bpdeletion cre-

ates a frameshift (p.Thr53Tyrfs*6) resulting in a severely

truncated protein (Figure S2D). In family FP9, two affected

male siblings were born to nonconsanguineous parents of

British ancestry.17 Sequencing of a sample from the older

boy identified two different heterozygous frameshift muta-

tions (c.78_79insTT and c.751delA) predicted to result in

PTCs in the N-terminal half of the protein (p.Gly27Leufs*

4 and p.Ser251Alafs*6, respectively). The proband’smother

is heterozygous for one of the two mutations (c.751delA),

confirming the compound-heterozygous status of her son

(Figure S2E). By identifying six different deleterious muta-

tions (Figure 2A) in five unrelated individuals with Filippi

syndrome (Table 1), we provide compelling genetic evi-

dence of a central role for CKAP2L in the etiology of Filippi

syndrome.Only one of the sixmutations, c.554_555delAA,

is described in the NHLBI EVS. It was found in 3 out of

12,507 chromosomes but never in a homozygous state.

The detection of carriers of recessive disease alleles in such

a large sample size isnotunexpected andmight characterize

c.554_555delAA as a founder mutation. All samples in

this study were obtained with written informed consent

accompanying the affected individuals’samples.All clinical

investigations were conducted according to the principles

expressed in the Declaration of Helsinki. The institutional

review board of the ethics committee of theUniversityHos-

pital of Cologne approved the study.

CKAP2L consists of nine exons and encodes a 745 amino

acid polypeptide named cytoskeleton-associated protein 2-

like (CKAP2L). It contains the cytoskeleton-associated pro-

tein 2 (CKAP2) C terminus domain (CKAP2_C superfamily

[pfam15297]), encompassing 319 amino acids at its C ter-

minus, and shares it with CKAP2 (Figure 2B). Recent

studies have described the protein as Radmis (radial fiber

and mitotic spindle protein) on the basis of its localization

to the radial fibers (basal processes) and the bipolar mitotic
er 6, 2014



Figure 2. Position of CKAP2LMutations Identified in Filippi-Syn-
drome-Affected Families
(A) Genomic structure of human CKAP2L. The nine exons of
CKAP2L are displayed by boxes, which are drawn to scale. The
filled boxes represent the open reading frame, and the open boxes
represent the UTRs of the transcript. The introns are drawn as
connecting lines of arbitrary length. Vertical lines indicate the
positions of the mutations. Heterozygous mutations are shown
below the schematic, whereas all homozygous mutations are
shown above.
(B) Domain organization of CKAP2L as predicted by the NCBI
Conserved Domain Database. A peptide of 329 amino acids (resi-
dues 415–734) was recognized as cytoskeleton-associated protein
2 C terminus (CKAP2_C). The position of a KEN box motif (Lys-
Glu-Asn) is highlighted in blue (residues 185–187). KEN box
motifs are known to be a target sequence of APC/C protein
CDH1 to initiate proteasomal degradation.18 The position of a
nonconsensus sumoylated peptide identified by mass spectrom-
etry is shown in yellow (residues 198–206).19
spindle of dividing neural stem or progenitor cells in mu-

rine embryonic and perinatal brains.20 Further, CKAP2L

was reported as a component of the human centrosome,

where it was located at the spindle pole, the spindle, and

the midbody.21 Blomster et al. identified a unique noncon-

sensus sumoylation site (amino acid positions 198–206 in

CKAP2L) in which the lysine at position 198 was sumoy-

lated.19 The level of CKAP2L is tightly regulated during

the cell cycle by anaphase-promoting complex/cyclosome

(APC/C), which recognizes its substrates via a KEN box

motif (Lys-Glu-Asn), also present in CKAP2L, and pro-

motes their ordered degradation.18,20 Overexpression of

CKAP2L with an altered KEN box in human embryonic

kidney 293 (HEK293) cells induced defective mitotic spin-

dles, which resulted in monopolar and multipolar con-

figurations. In vivo overexpression of wild-type CKAP2L

resulted in apparently increased mitosis in the ventricular

and subventricular zones (SVZs) of the embryonic mouse

brain, whereas excess of CKAP2L with an altered KEN

box reduced the proliferation rate of the neuronal progen-

itor cells and increased their cell-cycle exit. Abnormal dif-

ferentiation or apoptosis of the neuronal progenitors

might lead to the observed reduction of the embryonic
The American
SVZ in this model.20 This suggests that tightly regulated

levels of CKAP2L are critical for the proper progression of

cell division of neural progenitor cells. Thus, it is reason-

able to assume that a deregulated level of this protein could

directly affect the number of neurons generated during

prenatal brain development. Consequently, the outlined

findings strongly support CKAP2L as a candidate gene

that when mutated might cause a human phenotype

with reduced brain size or impaired neuronal function.

Five of the six identified CKAP2Lmutations lead to PTCs

in the N-terminal part of the protein and thus are likely to

cause nonsense-mediated mRNA decay. Residual amounts

of altered translation products, if formed and stable, would

be severely truncated and hence incompatible with normal

functioning of the protein. To analyze the effect of

absent and/or truncated CKAP2L at the cellular level,

we studied Epstein-Barr-virus-infected lymphoblastoid

cell lines (LCLs) derived from both affected individuals

with the c.571dupA mutation from FP1.22 For immunoflu-

orescence, cells were fixed with prechilled methanol for

10 min at �20�C and blocked with 13 PBS with 5% BSA

and 0.45% fish gelatin (PBG) for 15 min. After incubation

with primary and respective secondary antibodies, images

were obtained by confocal microscopy with a Leica LSM

TCS SP5 confocal microscope equipped with a very sensi-

tive hybrid detector (HyD).

When studying the localization of CKAP2L throughout

the cell cycle, we observed very strong CKAP2L staining

onmicrotubules of the spindle pole throughoutmetaphase

to telophase in wild-type cells. We did not detect CKAP2L

staining in prophase or interphase (Figure 3). In contrast,

CKAP2L was absent at the spindle pole in all dividing cells

obtained from both Filippi-syndrome-affected individuals

with the c.571dupA mutation. CKAP2L was also not

detectable in interphase cells (Figure 4). Immunofluores-

cence studies were carried out in HaCaT cells. Interphase

HaCaTcells did not show CKAP2L staining, but in dividing

cells, CKAP2L was present at the spindle poles from prom-

etaphase until telophase (Figure S3). This localization of

CKAP2L in wild-type LCLs and HaCaT cells is in keeping

with findings in HEK293 and Neuro2a cells.20 The absence

of CKAP2L at the spindle pole of the affected individuals’

cells prompted us to analyze further cellular phenotypes

associated with the c.571dupA mutation.

LCLs with c.571dupA (p.Ile191Asnfs*6) showed severe

cellular defects, including disorganized mitotic spindles,

a long chromatin bridge between daughter nuclei, and

supernumerary centrosomes. LCLs from both affected

brothers exhibited disorganized spindle microtubules,

which also seemed to be shorter in length. Staining for cen-

trosomal (g-tubulin) and spindle (a-tubulin) microtubules

indicated abnormal multipolar spindles originating from

multiple g-tubulin-positive centrosomes (Figures 4 and

S4). About 26% of cells from the affected individual

had disorganized mitotic spindles, whereas only 5.33%

of wild-type cells had this abnormality (Figure 5A).

Given that mitotic spindles ensure proper chromosome
Journal of Human Genetics 95, 622–632, November 6, 2014 627



Figure 3. Subcellular Localization of
CKAP2L in Wild-Type LCLs
Wild-type LCLs were cultivated in RPMI-
1640 (GIBCO, Life Technologies) supple-
mented with 10% fetal bovine serum and
antibiotics (penicillin and streptomycin).
For analysis of spindle microtubules, the
cells were incubated with tubulin-stabili-
zation buffer23 before and after blocking
with PBG. Primary antibodies specific to
CKAP2L (NBP1-83450, Novus Biologicals,
1:300; green), g-tubulin (GTU-88, Sigma-
Aldrich, 1:300; red), and a-tubulin24 (YL
1/2, 1:20; turquoise) were used. Secondary
antibodies Alexa Fluor 488 donkey anti-
rabbit IgG (A21206, Invitrogen), Alexa
Fluor 568 goat anti-mouse IgG (A11004,
Invitrogen), and Alexa Fluor 647 goat
anti-rat IgG (A21247, Invitrogen) were
used as appropriate, and DAPI (D9564,
Sigma) was used for DNA detection.
CKAP2L was detected at the spindle pole
from prometaphase to telophase. Inter-
phase cells did not show any CKAP2L
staining. Scale bars represent 5 mm.
segregation during cell division, we investigated the con-

sequences of disorganized mitotic spindles in the LCLs

from the affected individuals. Defective spindle microtu-

bules were visible as abnormal connections (‘‘chromatin

bridges’’) between separating daughter nuclei stained

with DAPI in the LCLs from both affected individuals.

This phenotype of chromosome lagging was observed

during anaphase, telophase, and cytokinesis. Chromatin

bridges weremainly observed during cytokinesis (Figure 4).

Approximately 25.33% of cells from affected individuals

were connected by lagging chromosomes, whereas only

4.66% wild-type cells were (Figure 5B). LCLs from the
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affected individuals had multiple

g-tubulin-stained centrosomes, and

the majority (~30.66%) of the mitotic

cells had three or four centrosomes

(which led to multipolar con-

figurations), whereas only 6.66% of

wild-type cells had supernumerary

centrosomes (Figures 4, 5C, and S4).

The level of CKAP2L was analyzed

by immunoblotting. A protein of

approximately 84 kDa, the predicted

molecular weight of CKAP2L, was de-

tected in cell lysates from wild-type

LCLs, whereas no protein was

observed in cell lysates from LCLs of

both individuals with Filippi syn-

drome (Figure 5D), concordant with

the immunofluorescence data.

In addition to microcephaly, syn-

dactyly is a hallmark of Filippi syn-

drome. To investigate the role of

CKAP2L in the etiology of syndactyly,
we examined the presence of CKAP2L in mouse embryo

tissues with a particular focus on the limb buds. For this,

we used immunohistochemistry and confocal microscopy

as described elsewhere.20 Significant CKAP2L immunore-

activity was observed in the neural progenitor cells

throughout the neural tube and in the myotome of an em-

bryonic day 10.5 (E10.5) embryo (Figures 6A and 6B). In

contrast, overall CKAP2L staining in the limb buds was

weak. However, closer inspection of the developing mouse

limb buds revealed that there was a substantial amount of

CKAP2L at the spindle poles (arrows) of dividing mesen-

chymal cells (Figures 6C and 6D). When analyzing



Figure 4. Analysis of CKAP2L Localiza-
tion, Spindle Morphology, Centrosomes,
and DNA in LCLs from Affected Individ-
uals Carrying the c.571dupA Mutation
Confocal-microscopy images of an
affected individual’s LCLs, stained for
CKAP2L (green), a-tubulin (turquoise),
and g-tubulin (red) and stained with
DAPI (blue). Immunoreactivity of CKAP2L
was not observed at the spindles or the
spindle poles of dividing cells. Defective
spindles (metaphase), supernumerary cen-
trosomes (metaphase), and abnormal
chromatin bridges (inset) between sepa-
rating daughter nuclei during cytokinesis
accompanied the absence of CKAP2L.
Scale bars represent 5 mm.
embryos at E12.5, the time at which the digits appear, we

found that CKAP2L continued to be present in dividing

progenitor cells in limb buds, includingmesenchymal cells

and formative chondrocyte cells of digit cartilage. Intrigu-

ingly, strong CKAP2L staining was also seen in the fine pro-

cesses of myogenic progenitor cells (Figure 6E). These cells

are known to be delaminated from the ventrolateral lips of

the dermomyotome and to migrate to give rise to limb

muscles.25,26 These findings indicate that CKAP2L is ex-

pressed at the right places to be involved in the formation

of syndactyly, even though the mechanism remains un-

clear. It might be possible that CKAP2L deficiency impairs

apoptosis in the interdigital spaces by virtue of its detri-

mental effects on mitosis and potential activation of

mitotic checkpoints.
The American Journal of Human Gen
We observed two different types of

mutations in our families affected by

Filippi syndrome. The majority were

PTC-causing frameshift mutations

consistent with loss of function.

However, the loss of the transla-

tional start site, c.2T>C (p.Met1?),

needs some more consideration. We

could not investigate cells from FP5.

Potentially, this mutation causes a

redirection of the initiation complex

of the translational machinery to

another AUG codon further down-

stream from the original start codon,

resulting in the loss of the first 165

amino acids of the primary polypep-

tide. Intriguingly, an entry in the

Ensembl database suggests the exis-

tence of a protein starting only

at the downstream AUG in exon 4

(ENSP00000438763). It would be

interesting to find out whether it

really represents a wild-type isoform

and, if so, whether it would be func-

tionally redundant to the longer
version. In view of the phenotype displayed by indi-

vidual FP5-1 (Table 1), this redundancy could only be a

partial one.

We suggest that all mutations identified in CKAP2L

result in a depletion of CKAP2L. At a cellular level, this

loss causes defects in spindle organization and leads to

multipolarity and disturbed chromosome segregation.

Similar results of spindle disorganization, chromosome-

segregation defects, and multipolar spindle organization

were obtained upon knockdown of CKAP2L in NIH 3T3-

13C7 cells.20 Also, CKAP2L depletion by in vivo knock-

down, accomplished by in utero electroporation, disrupted

the mitotic spindles and caused a catastrophe in chromo-

some segregation in neural stem or progenitor cells of the

developing embryonic mouse brains.20
etics 95, 622–632, November 6, 2014 629



Figure 5. Statistical Analysis of Abnormalities of Spindles, Cen-
trosomes, and DNA in LCLs from Affected Individuals
(A) Statistical data of disorganized spindle microtubules observed
in wild-type and mutant LCLs from three different experiments
(n > 50 cells per experiment). Error bars represent the SEM.
p value ¼ 0.0314 (Student’s t test).
(B) Statistical data of chromosome lagging observed between the
daughter nuclei during cytokinesis in wild-type and mutant
LCLs. A total of 150 cells duringmitosis from three different exper-
iments (n ¼ 50 cells per experiment) were analyzed. Error bars
represent the SEM. p value ¼ 0.0143 (Student’s t test).
(C) Statistical data of supernumerary centrosomes observed during
mitosis in wild-type and mutant LCLs from three different exper-
iments (n> 50 cells per experiment). Error bars represent the SEM.
p value ¼ 0.0021 (Student’s t test).
(D) A representative immunoblot with cell lysates from control
and mutant LCLs. Wild-type LCLs and affected individuals’ LCLs
were harvested by centrifugation and lysed in ice-cold RIPA buffer
(R0278, Sigma-Aldrich) supplemented with a proteinase-inhibitor
cocktail (Sigma). After centrifugation, proteins in the supernatant
were denatured at 95�C for 5 min in SDS sample buffer. Proteins
were separated by 4%–12% SDS-PAGE (EC-890, National Diagnos-
tics) and blotted onto nitrocellulose membrane (PROTRANR,
Germany). Protein detection was performed with goat polyclonal
anti-CKAP2L as the primary antibody (sc-242448, Santa Cruz
Biotechnology) and GAPDH (G9295, Sigma-Aldrich) as the
loading control. Anti-goat IgG peroxidase conjugate (A9452,
Sigma) was used as the secondary antibody, and then the blots
were developed with an enhanced chemiluminescence system.
CKAP2L was not detected in lysates from mutant LCLs, whereas
a predicted 84 kDa band was detected in wild-type lysates. GAPDH
was used as a loading control.
Together with the data reported recently by Yumoto

et al.,20 our findings make CKAP2L, alias Radmis, a very

interesting protein in developmental brain research. The

presence of a sumoylation site on CKAP2L indicates

its diverse role during embryonic development. Mouse

CKAP2L is necessary for embryonic and adult neurogenesis

to ensure proper brain development. CKAP2L localizes to

the bipolarmitotic spindles and radial fibers of the dividing

neural progenitors during embryonic and perinatal brain

development. In the postnatal brain, CKAP2L localizes in

the proliferative region of lateral ventricles and the SVZ

that contains glial and neuronal precursors. CKAP2L also
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localizes to the mitotic spindles and the cellular processes

in the dividing cells of the SVZ of the adult brain. Further-

more, electron microscopy visualized CKAP2L on the spin-

dle microtubules and on the walls of paired centrioles in

mitotic cells of the SVZ of the adult mouse brain. The pres-

ence of CKAP2L in actively dividing neural progenitor cells

of prenatal, perinatal, postnatal, and adult brain highlights

its role in brain development and might explain why it

causes the prenatal and postnatal microcephaly observed

in subjects with Filippi syndrome. Further, our findings

are consistent with themitotic-spindle disruption underly-

ing other forms of inherited microcephaly, including

mutations in WDR62 (MIM 613583) and ASPM (MIM

605481).27,28 Our observation of supernumerary centro-

somes in LCLs of individuals with Filippi syndrome is in

linewith the data ofmultiple centrosomes observed in cells

carrying mutations in PCNT (MIM 605925) and CEP152

(MIM 613529), which are implicated in the etiology of

Seckel syndrome.29,30 The strong presence of CKAP2L in

the fine processes of the myogenic progenitor cells of

E12.5 mouse embryos also suggests a role in the formation

of limbmuscle. CKAP2Lmight play a role in the regulation

of apoptosis, a critical and important step in the removal of

webbing between the digits during development,31 which

is reminiscent of the phenotype of cutaneous syndactyly

observed in individuals with Filippi syndrome. The

screening of a larger collection of individuals with Filippi

syndrome revealed the genetic and clinical heterogeneity

of this syndrome. All affected individuals in our study had

microcephaly, short stature, characteristic facial features,

syndactyly, and intellectual disability. However, intrauter-

ine growth restriction, as well as significant microcephaly

evident at birth, seems to be a feature that is characteristic

of individuals with biallelic mutations in CKAP2L. All

affected individuals with mutations in CKAP2L—but only

one (FP6-1) of the four affected individualswithoutCKAP2L

mutations—showed prenatal growth retardation.

In summary, having identified six CKAP2L mutations in

five families, we have accumulated strong evidence that

CKAP2L is associated with Filippi syndrome. The loss of

CKAP2L function affects early development by compro-

mising cell division of neural progenitors. Apparently, it

also interferes with apoptosis to visibly affect the tissues

between fingers and toes.
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Figure 6. Detection of CKAP2L in the
Murine Embryonic Limb Buds
(A and B) A transverse section of an E10.5
whole mouse embryo coimmunostained
for CKAP2L (affinity-purified rabbit poly-
clonal antibody, 1:10,000; green, B) and
the mitosis-specific marker phosphohi-
stone H3 (mouse monoclonal IgG1, clone
6G3, Cell Signaling Technology, 1:1,000;
red, A). Nuclei were counterstained
with TOPRO-3 (Life Technologies; blue).
Robust immunoreactivity of CKAP2L was
observed in the neural progenitor cells
throughout the neural tube and the
myotome (double arrows in B). The scale
bar represents 100 mm. Abbreviations are
as follows: nt, neural tube; and lb, forelimb
bud. Asterisks indicate the dorsal aorta and
vein.
(C) Higher magnification of the forelimb
bud around the apical ectodermal ridge,
stained for CKAP2L (green) and phospho-
histone H3 (red). The immunoreactivity
of CKAP2L was significantly lower in the
connective tissues, including the limb
buds, than in the neural tube, but close in-
spection clearly disclosed CKAP2L staining
at the mitotic spindles (arrows) of dividing
mesenchymal cells, which were loosely
distributed in the developing limb bud.
Note that the section shown is different
from that in (A). The scale bar represents
75 mm. The following abbreviation is
used: epi, epithelial ectoderm.
(D) Individual dividing cells in anaphase
(left panel) and metaphase (right panel)
within the limb bud mesenchyme.
CKAP2L localized to the mitotic spindle
and spindle poles of mitotic cells. The scale
bar represents 50 mm.
(E) CKAP2L staining in an E12.5 forelimb
bud. CKAP2L immunoreactivity (green)
was detected in the dividing cells (arrows)

at the boundary region between the protruding cartilage and the surrounding mesenchyme. These CKAP2L-positive cells might include
the mitotic mesenchymal cells and the dividing chondrocyte progenitors. In addition, CKAP2L was detected in the fine processes of
myogenic progenitor cells, which delaminated from the ventrolateral lips of the dermomyotome and migrated to give rise to limb mus-
cles. TOPRO-3-stained nuclei are in blue. The scale bar represents 25 mm. The following abbreviation is used: ctl, developing cartilage.
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15. Rüschendorf, F., and Nürnberg, P. (2005). ALOHOMORA: a

tool for linkage analysis using 10K SNP array data. Bioinfor-

matics 21, 2123–2125.

16. Basmanav, F.B., Oprisoreanu, A.M., Pasternack, S.M., Thiele,

H., Fritz, G., Wenzel, J., Größer, L., Wehner, M., Wolf, S.,
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