52 research outputs found

    Genome sequence of the squalene-degrading bacterium Corynebacterium terpenotabidum type strain Y-11T (= DSM 44721T)

    Get PDF
    Rückert C, Albersmeier A, Al-Dilaimi A, et al. Genome sequence of the squalene-degrading bacterium Corynebacterium terpenotabidum type strain Y-11T (= DSM 44721T). Standards in Genomic Sciences. 2013;9(3):505-513.Corynebacterium terpenotabidum Takeuchi et. al 1999 is a member of the genus Corynebacterium, which contains Gram-positive and non-spore forming bacteria with a high G+C content. C. terpenotabidum was isolated from soil based on its ability to degrade squalene and belongs to the aerobic and non-hemolytic Corynebacteria. It displays tolerance to salts (up to 8%) and is related to Corynebacterium variabile involved in cheese ripening. As this is a type strain of Corynebacterium, this project describing the 2.75 Mbp long chromosome with its 2,369 protein-coding and 72 RNA genes will aid the Genomic Encyclopedia of Bacteria and Archaea project

    The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110

    Get PDF
    Schwientek P, Szczepanowski R, Rückert C, et al. The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110. BMC Genomics. 2012;13(1): 112.Background Actinoplanes sp. SE50/110 is known as the wild type producer of the alpha-glucosidase inhibitor acarbose, a potent drug used worldwide in the treatment of type-2 diabetes mellitus. As the incidence of diabetes is rapidly rising worldwide, an ever increasing demand for diabetes drugs, such as acarbose, needs to be anticipated. Consequently, derived Actinoplanes strains with increased acarbose yields are being used in large scale industrial batch fermentation since 1990 and were continuously optimized by conventional mutagenesis and screening experiments. This strategy reached its limits and is generally superseded by modern genetic engineering approaches. As a prerequisite for targeted genetic modifications, the complete genome sequence of the organism has to be known. Results Here, we present the complete genome sequence of Actinoplanes sp. SE50/110 [GenBank:CP003170], the first publicly available genome of the genus Actinoplanes, comprising various producers of pharmaceutically and economically important secondary metabolites. The genome features a high mean G + C content of 71.32% and consists of one circular chromosome with a size of 9,239,851 bp hosting 8,270 predicted protein coding sequences. Phylogenetic analysis of the core genome revealed a rather distant relation to other sequenced species of the family Micromonosporaceae whereas Actinoplanes utahensis was found to be the closest species based on 16S rRNA gene sequence comparison. Besides the already published acarbose biosynthetic gene cluster sequence, several new non-ribosomal peptide synthetase-, polyketide synthase- and hybrid-clusters were identified on the Actinoplanes genome. Another key feature of the genome represents the discovery of a functional actinomycete integrative and conjugative element. Conclusions The complete genome sequence of Actinoplanes sp. SE50/110 marks an important step towards the rational genetic optimization of the acarbose production. In this regard, the identified actinomycete integrative and conjugative element could play a central role by providing the basis for the development of a genetic transformation system for Actinoplanes sp. SE50/110 and other Actinoplanes spp. Furthermore, the identified non-ribosomal peptide synthetase- and polyketide synthase-clusters potentially encode new antibiotics and/or other bioactive compounds, which might be of pharmacologic interest

    Complete genome sequence and lifestyle of black-pigmented Corynebacterium aurimucosum ATCC 700975 (formerly C. nigricans CN-1) isolated from a vaginal swab of a woman with spontaneous abortion

    Get PDF
    Trost E, Götker S, Schneider J, et al. Complete genome sequence and lifestyle of black-pigmented Corynebacterium aurimucosum ATCC 700975 (formerly C. nigricans CN-1) isolated from a vaginal swab of a woman with spontaneous abortion. BMC Genomics. 2010;11(1): 91.Background Corynebacterium aurimucosum is a slightly yellowish, non-lipophilic, facultative anaerobic member of the genus Corynebacterium and predominantly isolated from human clinical specimens. Unusual black-pigmented variants of C. aurimucosum (originally named as C. nigricans) continue to be recovered from the female urogenital tract and they are associated with complications during pregnancy. C. aurimucosum ATCC 700975 (C. nigricans CN-1) was originally isolated from a vaginal swab of a 34-year-old woman who experienced a spontaneous abortion during month six of pregnancy. For a better understanding of the physiology and lifestyle of this potential urogenital pathogen, the complete genome sequence of C. aurimucosum ATCC 700975 was determined. Results Sequencing and assembly of the C. aurimucosum ATCC 700975 genome yielded a circular chromosome of 2,790,189 bp in size and the 29,037-bp plasmid pET44827. Specific gene sets associated with the central metabolism of C. aurimucosum apparently provide enhanced metabolic flexibility and adaptability in aerobic, anaerobic and low-pH environments, including gene clusters for the uptake and degradation of aromatic amines, L-histidine and L-tartrate as well as a gene region for the formation of selenocysteine and its incorporation into formate dehydrogenase. Plasmid pET44827 codes for a non-ribosomal peptide synthetase that plays the pivotal role in the synthesis of the characteristic black pigment of C. aurimucosum ATCC 700975. Conclusions The data obtained by the genome project suggest that C. aurimucosum could be both a resident of the human gut and possibly a pathogen in the female genital tract causing complications during pregnancy. Since hitherto all black-pigmented C. aurimucosum strains have been recovered from female genital source, biosynthesis of the pigment is apparently required for colonization by protecting the bacterial cells against the high hydrogen peroxide concentration in the vaginal environment. The location of the corresponding genes on plasmid pET44827 explains why black-pigmented (formerly C. nigricans) and non-pigmented C. aurimucosum strains were isolated from clinical specimens

    Prospective Genomic Characterization of the German Enterohemorrhagic Escherichia coli O104:H4 Outbreak by Rapid Next Generation Sequencing Technology

    Get PDF
    An ongoing outbreak of exceptionally virulent Shiga toxin (Stx)-producing Escherichia coli O104:H4 centered in Germany, has caused over 830 cases of hemolytic uremic syndrome (HUS) and 46 deaths since May 2011. Serotype O104:H4, which has not been detected in animals, has rarely been associated with HUS in the past. To prospectively elucidate the unique characteristics of this strain in the early stages of this outbreak, we applied whole genome sequencing on the Life Technologies Ion Torrent PGM™ sequencer and Optical Mapping to characterize one outbreak isolate (LB226692) and a historic O104:H4 HUS isolate from 2001 (01-09591). Reference guided draft assemblies of both strains were completed with the newly introduced PGM™ within 62 hours. The HUS-associated strains both carried genes typically found in two types of pathogenic E. coli, enteroaggregative E. coli (EAEC) and enterohemorrhagic E. coli (EHEC). Phylogenetic analyses of 1,144 core E. coli genes indicate that the HUS-causing O104:H4 strains and the previously published sequence of the EAEC strain 55989 show a close relationship but are only distantly related to common EHEC serotypes. Though closely related, the outbreak strain differs from the 2001 strain in plasmid content and fimbrial genes. We propose a model in which EAEC 55989 and EHEC O104:H4 strains evolved from a common EHEC O104:H4 progenitor, and suggest that by stepwise gain and loss of chromosomal and plasmid-encoded virulence factors, a highly pathogenic hybrid of EAEC and EHEC emerged as the current outbreak clone. In conclusion, rapid next-generation technologies facilitated prospective whole genome characterization in the early stages of an outbreak

    Sequenzerstellung, komparative Genomik und funktionelle Analysen von Antibiotika-Resistenzplasmiden aus Belebtschlammbakterien einer kommunalen Abwasserkläranlage

    No full text
    Szczepanowski R. Sequenzerstellung, komparative Genomik und funktionelle Analysen von Antibiotika-Resistenzplasmiden aus Belebtschlammbakterien einer kommunalen Abwasserkläranlage. Bielefeld; 2004

    Different molecular rearrangements in the integron of the IncP-1 beta resistance plasmid pB10 isolated from a wastewater treatment plant result in elevated beta-lactam resistance levels

    No full text
    Krahn I, Szczepanowski R, Pühler A, Schlüter A. Different molecular rearrangements in the integron of the IncP-1 beta resistance plasmid pB10 isolated from a wastewater treatment plant result in elevated beta-lactam resistance levels. ARCHIVES OF MICROBIOLOGY. 2004;182(6):429-435.The multiresistance IncP-1 beta plasmid pB10 conferring resistance to ampicillin, streptomycin, sulfonamides, tetracycline and mercury ions was previously obtained from activated sludge bacteria by applying the exogenous isolation method with Pseudomonas sp. strain GFP2 as recipient. A pB10 derivative, designated pB10-1, occurred spontaneously and displays an extended NotI restriction fragment. From the pB10 nucleotide sequence, it is known that the corresponding NotI fragment of this plasmid contains a complete class 1 integron with an oxa2 and an orfE-like gene cassette. Sequencing of the integron-specific variable region present on pB10-1 revealed that a second copy of the oxa2 gene cassette has inserted downstream of the orfE-like cassette. Sequences flanking the second oxa2 cassette indicate that this cassette was excised from pB10 and reinserted at a new site in an integrase-catalyzed manner. Duplication of the oxa2 cassette is associated with a higher level of ampicillin resistance. Another pB10 derivative, designated pB10-2, conferring higher resistance to ampicillin, was shown to carry an IS10 insertion upstream of the oxa2 cassette. Since IS10 possesses a promoter-out activity, it can be assumed that the elevated ampicillin resistance level is due to enhanced transcription of the beta-lactamase gene

    Advanced Genomics and Transcriptomics of Industrial Microorganisms

    No full text
    Kalinowski J, Rückert C, Szczepanowski R, Pühler A. Advanced Genomics and Transcriptomics of Industrial Microorganisms. Chemie Ingenieur Technik. 2010;82(9):1518-1519

    Sequence of the 68,869 bp IncP-1 alpha plasmid pTB11 from a waste-water treatment plant reveals a highly conserved backbone, a Tn402-like integron and other transposable elements

    No full text
    Tennstedt T, Szczepanowski R, Krahn I, Pühler A, Schlüter A. Sequence of the 68,869 bp IncP-1 alpha plasmid pTB11 from a waste-water treatment plant reveals a highly conserved backbone, a Tn402-like integron and other transposable elements. PLASMID. 2005;53(3):218-238.To analyse the significance of conjugative broad-host-range IncP-lot plasmids for the spread of antibiotic resistance determinants in waste-water treatment plants we isolated and characterised five different IncP-lot plasmids from bacteria of activated sludge and the final effluents of a municipal waste-water treatment plant. These plasmids mediate resistance to ampicillin, cefaclor, cefuroxime, gentamicin, kanamycin, spectinomycin, streptomycin, tetracycline, tobramycin, and trimethoprim. The complete 68,869 bp DNA-sequence of the IncP-1α plasmid pTB11 was determined. The pTB11 backbone modules for replication (Rep), mating pair formation (Trb), multimer resolution (Mrs), post-segregational killing (Psk), conjugative DNA-transfer (Tra), plasmid control (01), and stable maintenance and inheritance (KilA, KilE, and KilC) are highly conserved as compared to the ′ Birmingham′ IncP-lα plasmids. In contrast to the ′ Birmingham′ plasmids pTB11 carries an insert of a Tn402-derivative integrating a class 1 integron in the intergenic region between the multimer resolution operon parCBA and the post-segregational killing operon parDE. The integron comprises the resistance gene cassettes oxa2 (β-lactamase), aacA4 (aminoglycoside-6′ N-acetyltransferase), and aadA1 (aminoglycoside-3′-adenylyltransfetase) and a complete tniABQR transposition module. Integron-specific sequences were also identified on other IncP-lα plasmids analysed in this work. In contrast to the ′ Birmingham′ plasmids the pTB11 tetracycline resistance module carries a pecM- and a pncA-like gene downstream of the tetracycline resistance gene tetA and contains an insertion of the new insertion sequence element ISTB11. The transposable elements IS21 and Tn1 which disrupted, respectively, orf7 and klcB on the ′ Birmingham′ plasmids are not present on pTB11. Identification of IncP-lα plasmids in bacteria of the waste-water treatment plant's final effluents indicates that bacteria carrying these kind of plasmids are released into the environment. © 2004 Elsevier Inc. All rights reserved
    corecore