381 research outputs found
The Bao-ni Matrix Cathode Formed by the Nickelate Technique
Properties of thermionic cathode produced by reacting barium carbonate and nickel oxide on nicke
Collective excitation spectrum of a disordered Hubbard model
We study the collective excitation spectrum of a d=3 site-disordered
Anderson-Hubbard model at half-filling, via a random-phase approximation (RPA)
about broken-symmetry, inhomogeneous unrestricted Hartree-Fock (UHF) ground
states. We focus in particular on the density and character of low-frequency
collective excitations in the transverse spin channel. In the absence of
disorder, these are found to be spin-wave-like for all but very weak
interaction strengths, extending down to zero frequency and separated from a
Stoner-like band, to which there is a gap. With disorder present, a prominent
spin-wave-like band is found to persist over a wide region of the
disorder-interaction phase plane in which the mean-field ground state is a
disordered antiferromagnet, despite the closure of the UHF single-particle gap.
Site resolution of the RPA excitations leads to a microscopic rationalization
of the evolution of the spectrum with disorder and interaction strength, and
enables the observed localization properties to be interpreted in terms of the
fraction of strong local moments and their site-differential distribution.Comment: 25 pages (revtex), 9 postscript figure
Magnetic susceptibility, exchange interactions and spin-wave spectra in the local spin density approximation
Starting from exact expression for the dynamical spin susceptibility in the
time-dependent density functional theory a controversial issue about exchange
interaction parameters and spin-wave excitation spectra of itinerant electron
ferromagnets is reconsidered. It is shown that the original expressions for
exchange integrals based on the magnetic force theorem (J. Phys. F14 L125
(1984)) are optimal for the calculations of the magnon spectrum whereas static
response function is better described by the ``renormalized'' magnetic force
theorem by P. Bruno (Phys. Rev. Lett. 90, 087205 (2003)). This conclusion is
confirmed by the {\it ab initio} calculations for Fe and Ni.Comment: 12 pages, 2 figures, submitted to JPC
Recommended from our members
A new 14 GHz Electron-Cyclotron-Resonance Ion Source (ECRIS) for the heavy ion accelerator facility ATLAS
A 14 GHz Electron-Cyclotron-Resonance Ion Source (ECRIS) has been designed and built at Argonne National Laboratory. The source is a modification of the AECR at Berkeley and incorporates the latest results from ECR developments to produce intense beams of highly charged ions, including an improved magnetic confinement of the plasma electrons with an axial mirror ratio of 3.5. The aluminum plasma chamber and extraction electrode as well as a biased disk on axis at the microwave injection side donates additional electrons to the plasma, making use of the large secondary electron yield from aluminum oxide. The source is capable of ECR plasma heating using two different frequencies simultaneously to increase the electron energy gain for the production of high charge states. The main design goal is to produce several e{mu}A of at least {sup 238}U{sup 35+} in order to accelerate the beam to coulomb-barrier energies without further stripping. First charge state distributions for gaseous elements have been measured and 210 e{mu}A {sup 16}O{sup 7+} has been achieved. A normalized 90% emittance from 0.1 to 0.2 {pi} mm{sm_bullet}mrad for krypton and oxygen beam has been found
Incidence and etiology of acute renal failure among ambulatory HIV-infected patients
BACKGROUND: Acute renal failure (ARF) is a cause of renal dysfunction in human immunodeficiency virus (HIV)-infected patients. Its incidence and causes have not been studied since the introduction of highly active antiretroviral therapy (HAART) in HIV ambulatory patients.
METHODS: This is a prospective cohort study of 754 HIV patients, 18 years or older, seen at a university-based infectious disease clinic between 2000 and 2002. ARF was identified using proportional increases in serum creatinine from baseline and by chart review. Clinical conditions were assessed at the time of the ARF event. ARF incidence rates (IR) were calculated by dividing the number of events by person time at risk. To compare patients with and without ARF, t test or chi-square test were used.
RESULTS: Patient's mean age was 40 years; 68% were male and 61% were black. One hundred-eleven ARF events occurred in 71 subjects (IR 5.9 per 100 person-years; 95% CI 4.9, 7.1). ARF was more common in men, in those with CD4 cell count 10,000 copies/mL. These patients more often had acquired immunodeficiency syndrome (AIDS), hepatitis C infection (HCV), and have received HAART. ARF was mainly community-acquired, due to prerenal causes or acute tubular necrosis, and associated with opportunistic infections and drugs. Liver disease was a cause of ARF in HCV-infected patients.
CONCLUSION: ARF is common in ambulatory HIV patients. Immunosuppression, infection, and HCV are important conditions associated with ARF in the post-HAART era
Recommended from our members
A new 14 GHz electron-cyclotron-resonance ion source (ECRIS) for the heavy ion accelerator facility ATLAS: a status report
A new 14 GHz ECRIS has been designed and built over the last 2 years. The source, a modification of the Berkeley AECR, incorporates the latest results from ECR developments to produce intense beams of highly charged ions, i.e., an improved electron confinement with an axial magnetic mirror ratio of 3.5 and a radial magnetic field inside the plasma chamber of 1.0 T. The aluminium plasma chamber and extraction electrode as well as a biased disk on axis at the microwave injection side donate additional electrons to the plasma, making use of the large secondary electron yield from Al oxide. Slots in the plasma chamber allow for radial pumping which increases the AECR performance. The source will also be capable of additional ECR plasma heating using two frequencies simultaneously to increase the electron energy gain for producing high charge states. To be able to deliver usable intensities of the heaviest ion beams, the design will also allow for axial access for metal evaporation ovens and solid material samples using plasma sputtering. Main design goal is to produce several e{mu}A of U{sup 34+} in order to obtain Coulomb- barrier energies from ATLAS without further stripping
Disorder-enhanced delocalization and local-moment quenching in a disordered antiferromagnet
The interplay of disorder and spin-fluctuation effects in a disordered
antiferromagnet is studied. In the weak-disorder regime (W \le U), while the
energy gap decreases rapidly with disorder, the sublattice magnetization,
including quantum corrections, is found to remain essentially unchanged in the
strong correlation limit. Magnon energies and Neel temperature are enhanced by
disorder in this limit. A single paradigm of disorder-enhanced delocalization
qualitatively accounts for all these weak disorder effects. Vertex corrections
and magnon damping, which appear only at order (W/U)^4, are also studied. With
increasing disorder a crossover is found at W \sim U, characterized by a rapid
decrease in sublattice magnetization due to quenching of local moments, and
formation of spin vacancies. The latter suggests a spin-dilution behavior,
which is indeed observed in softened magnon modes, lowering of Neel
temperature, and enhanced transverse spin fluctuations.Comment: 12 pages, includes 8 postscript figures. To appear in Physical Review
B. References adde
Iron Status and Analysis of Efficacy and Safety of Ferric Carboxymaltose Treatment in Patients with Inflammatory Bowel Disease
Background and Aims:We analyzed iron deficiency and the therapeutic response following intravenous ferric carboxymaltose in a large single-center inflammatory bowel disease (IBD) cohort. Methods: 250 IBD patients were retrospectively analyzed for iron deficiency and iron deficiency anemia. A subgroup was analyzed regarding efficacy and side effects of iron supplementation with ferric carboxymaltose. Results: In the cohort (n = 250), 54.4% of the patients had serum iron levels 60 mu g/dl, 61.6% had ferritin >100 ng/ml, and 90.7% reached Hb >12/13 g/dl at follow-up (p < 0.0001 for all parameters vs. pretreatment values). The most frequent adverse event was a transient increase of liver enzymes with male gender as risk factor (p = 0.008, OR 8.62, 95% CI 1.74-41.66). Conclusions: Iron deficiency and anemia are frequent in IBD patients. Treatment with ferric carboxymaltose is efficious, safe and well tolerated in iron-deficient IBD patients. Copyright (C) 2011 S. Karger AG, Base
Symmetry breaking in the Hubbard model at weak coupling
The phase diagram of the Hubbard model is studied at weak coupling in two and
three spatial dimensions. It is shown that the Neel temperature and the order
parameter in d=3 are smaller than the Hartree-Fock predictions by a factor of
q=0.2599. For d=2 we show that the self-consistent (sc) perturbation series
bears no relevance to the behavior of the exact solution of the Hubbard model
in the symmetry-broken phase. We also investigate an anisotropic model and show
that the coupling between planes is essential for the validity of
mean-field-type order parameters
Electrical Sintering of Silver Nanoparticle Ink Studied by In-Situ TEM Probing
Metallic nanoparticle inks are used for printed electronics, but to reach acceptable conductivity the structures need to be sintered, usually using a furnace. Recently, sintering by direct resistive heating has been demonstrated. For a microscopic understanding of this Joule heating sintering method, we studied the entire process in real time inside a transmission electron microscope equipped with a movable electrical probe. We found an onset of Joule heating induced sintering and coalescence of nanoparticles at power levels of 0.1–10 mW/m3. In addition, a carbonization of the organic shells that stabilize the nanoparticles were found, with a conductivity of 4 105 Sm−1
- …