57 research outputs found

    Central adjudication of serious adverse events did not affect trial's safety results: Data from the Efficacy of Nitric Oxide in Stroke (ENOS) trial

    Get PDF
    Background and purpose Central adjudication of serious adverse events (SAEs) can be undertaken in clinical trials, especially for open-label studies where outcome assessment may be at risk of bias. This study explored the effect of central adjudication of SAEs on the safety results of the Efficacy of Nitric Oxide in Stroke (ENOS) Trial. Methods ENOS assigned patients with acute stroke at random to receive either transdermal glyceryl trinitrate (GTN) or no GTN and to Stop or Continue previous antihypertensive treatment. SAEs were reported by local investigators who were not blinded to treatment allocation. Central adjudicators, blinded to treatment allocation, reviewed the investigators reports and used evidence available to confirm or re-categorise the classification of event, likely causality, diagnosis and expectedness of event. Results Of 4011 patients enrolled in ENOS, 1473 SAEs were reported by local investigators; this was reduced to 1444 after the review by adjudicators, with 29 re-classified as not an SAE. There was fair agreement between investigators and adjudicators regarding likely causality, with 808 agreements and 644 disagreements (56% crude agreement, weighted kappa, κ = 0.31). Agreement increased upon dichotomisation of the causality categories, with 1432 agreements and 20 disagreements (99% crude agreement, kappa = 0.54). Repeating the main trial safety analysis with investigator reported events showed that adjudication had no effect on the main trial safety conclusions. Conclusions In a large trial, with many SAEs reported, central adjudication of these events did not affect trial conclusions. This suggests that adjudication of SAEs in a clinical trial where the intervention already has a well-established safety profile may not be necessary. Potential efficiency savings (financial, logistical) can be made through not adjudicating SAEs

    Whole-Exome Sequencing and Homozygosity Analysis Implicate Depolarization-Regulated Neuronal Genes in Autism

    Get PDF
    Although autism has a clear genetic component, the high genetic heterogeneity of the disorder has been a challenge for the identification of causative genes. We used homozygosity analysis to identify probands from nonconsanguineous families that showed evidence of distant shared ancestry, suggesting potentially recessive mutations. Whole-exome sequencing of 16 probands revealed validated homozygous, potentially pathogenic recessive mutations that segregated perfectly with disease in 4/16 families. The candidate genes (UBE3B, CLTCL1, NCKAP5L, ZNF18) encode proteins involved in proteolysis, GTPase-mediated signaling, cytoskeletal organization, and other pathways. Furthermore, neuronal depolarization regulated the transcription of these genes, suggesting potential activity-dependent roles in neurons. We present a multidimensional strategy for filtering whole-exome sequence data to find candidate recessive mutations in autism, which may have broader applicability to other complex, heterogeneous disorders

    Association and Mutation Analyses of 16p11.2 Autism Candidate Genes

    Get PDF
    Autism is a complex childhood neurodevelopmental disorder with a strong genetic basis. Microdeletion or duplication of a approximately 500-700-kb genomic rearrangement on 16p11.2 that contains 24 genes represents the second most frequent chromosomal disorder associated with autism. The role of common and rare 16p11.2 sequence variants in autism etiology is unknown.To identify common 16p11.2 variants with a potential role in autism, we performed association studies using existing data generated from three microarray platforms: Affymetrix 5.0 (777 families), Illumina 550 K (943 families), and Affymetrix 500 K (60 families). No common variants were identified that were significantly associated with autism. To look for rare variants, we performed resequencing of coding and promoter regions for eight candidate genes selected based on their known expression patterns and functions. In total, we identified 26 novel variants in autism: 13 exonic (nine non-synonymous, three synonymous, and one untranslated region) and 13 promoter variants. We found a significant association between autism and a coding variant in the seizure-related gene SEZ6L2 (12/1106 autism vs. 3/1161 controls; p = 0.018). Sez6l2 expression in mouse embryos was restricted to the spinal cord and brain. SEZ6L2 expression in human fetal brain was highest in post-mitotic cortical layers, hippocampus, amygdala, and thalamus. Association analysis of SEZ6L2 in an independent sample set failed to replicate our initial findings.We have identified sequence variation in at least one candidate gene in 16p11.2 that may represent a novel genetic risk factor for autism. However, further studies are required to substantiate these preliminary findings

    Intergenerational Transmission of Multiple Problem Behaviors: Prospective Relationships between Mothers and Daughters

    Get PDF
    Much of the research examining intergenerational continuity of problems from mother to offspring has focused on homotypic continuity (e.g., depression), despite the fact that different types of mental health problems tend to cluster in both adults and children. It remains unclear whether mothers with multiple mental health problems compared to mothers with fewer or no problems are more likely to have daughters with multiple mental health problems during middle childhood (ages 7 to 11). Six waves of maternal and child data from the Pittsburgh Girls Study (n = 2,451) were used to examine the specificity of effects of maternal psychopathology on child adjustment. Child multiple mental health problems comprised disruptive behavior, ADHD symptoms, depressed mood, anxiety symptoms and somatic complaints, while maternal multiple mental health problems consisted of depression, prior conduct problems and somatic complaints. Generalized Estimating Equations (GEE) was used to examine the prospective relationships between mother’s single and multiple mental health problems and their daughter’s single and multiple mental health problems across the elementary school-aged period (ages 7–11 years). The results show that multiple mental health problems in the mothers predicted multiple mental health problems in the daughters even when earlier mental health problem of the daughters, demographic factors, and childrearing practices were controlled. Maternal low parental warmth and harsh punishment independently contributed to the prediction of multiple mental health problems in their daughter, but mediation analyses showed that the contribution of parenting behaviors to the explanation of girls’ mental health problems was small

    Molecular Signatures of Prostate Stem Cells Reveal Novel Signaling Pathways and Provide Insights into Prostate Cancer

    Get PDF
    BACKGROUND:The global gene expression profiles of adult and fetal murine prostate stem cells were determined to define common and unique regulators whose misexpression might play a role in the development of prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS:A distinctive core of transcriptional regulators common to both fetal and adult primitive prostate cells was identified as well as molecules that are exclusive to each population. Elements common to fetal and adult prostate stem cells include expression profiles of Wnt, Shh and other pathways identified in stem cells of other organs, signatures of the aryl-hydrocarbon receptor, and up-regulation of components of the aldehyde dehydrogenase/retinoic acid receptor axis. There is also a significant lipid metabolism signature, marked by overexpression of lipid metabolizing enzymes and the presence of the binding motif for Srebp1. The fetal stem cell population, characterized by more rapid proliferation and self-renewal, expresses regulators of the cell cycle, such as E2f, Nfy, Tead2 and Ap2, at elevated levels, while adult stem cells show a signature in which TGF-beta has a prominent role. Finally, comparison of the signatures of primitive prostate cells with previously described profiles of human prostate tumors identified stem cell molecules and pathways with deregulated expression in prostate tumors including chromatin modifiers and the oncogene, Erg. CONCLUSIONS/SIGNIFICANCE:Our data indicate that adult prostate stem or progenitor cells may acquire characteristics of self-renewing primitive fetal prostate cells during oncogenesis and suggest that aberrant activation of components of prostate stem cell pathways may contribute to the development of prostate tumors

    The pathophysiology of restricted repetitive behavior

    Get PDF
    Restricted, repetitive behaviors (RRBs) are heterogeneous ranging from stereotypic body movements to rituals to restricted interests. RRBs are most strongly associated with autism but occur in a number of other clinical disorders as well as in typical development. There does not seem to be a category of RRB that is unique or specific to autism and RRB does not seem to be robustly correlated with specific cognitive, sensory or motor abnormalities in autism. Despite its clinical significance, little is known about the pathophysiology of RRB. Both clinical and animal models studies link repetitive behaviors to genetic mutations and a number of specific genetic syndromes have RRBs as part of the clinical phenotype. Genetic risk factors may interact with experiential factors resulting in the extremes in repetitive behavior phenotypic expression that characterize autism. Few studies of individuals with autism have correlated MRI findings and RRBs and no attempt has been made to associate RRB and post-mortem tissue findings. Available clinical and animal models data indicate functional and structural alterations in cortical-basal ganglia circuitry in the expression of RRB, however. Our own studies point to reduced activity of the indirect basal ganglia pathway being associated with high levels of repetitive behavior in an animal model. These findings, if generalizable, suggest specific therapeutic targets. These, and perhaps other, perturbations to cortical basal ganglia circuitry are mediated by specific molecular mechanisms (e.g., altered gene expression) that result in long-term, experience-dependent neuroadaptations that initiate and maintain repetitive behavior. A great deal more research is needed to uncover such mechanisms. Work in areas such as substance abuse, OCD, Tourette syndrome, Parkinson’s disease, and dementias promise to provide findings critical for identifying neurobiological mechanisms relevant to RRB in autism. Moreover, basic research in areas such as birdsong, habit formation, and procedural learning may provide additional, much needed clues. Understanding the pathophysioloy of repetitive behavior will be critical to identifying novel therapeutic targets and strategies for individuals with autism

    Mapping autism risk loci using genetic linkage and chromosomal rearrangements.

    Get PDF
    International audienceAutism spectrum disorders (ASDs) are common, heritable neurodevelopmental conditions. The genetic architecture of ASDs is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASDs by using Affymetrix 10K SNP arrays and 1,181 [corrected] families with at least two affected individuals, performing the largest linkage scan to date while also analyzing copy number variation in these families. Linkage and copy number variation analyses implicate chromosome 11p12-p13 and neurexins, respectively, among other candidate loci. Neurexins team with previously implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for contributing to ASDs

    Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder

    Get PDF
    We systematically analyzed postzygotic mutations (PZMs) in whole-exome sequences from the largest collection of trios (5,947) with autism spectrum disorder (ASD) available, including 282 unpublished trios, and performed resequencing using multiple independent technologies. We identified 7.5% of de novo mutations as PZMs, 83.3% of which were not described in previous studies. Damaging, nonsynonymous PZMs within critical exons of prenatally expressed genes were more common in ASD probands than controls (P < 1 Ã 10-6), and genes carrying these PZMs were enriched for expression in the amygdala (P = 5.4 Ã 10-3). Two genes (KLF16 and MSANTD2) were significantly enriched for PZMs genome-wide, and other PZMs involved genes (SCN2A, HNRNPU and SMARCA4) whose mutation is known to cause ASD or other neurodevelopmental disorders. PZMs constitute a significant proportion of de novo mutations and contribute importantly to ASD risk

    Effect of glyceryl trinitrate on hemodynamics in acute stroke

    No full text
    Background and Purpose- Increased blood pressure (BP), heart rate, and their derivatives (variability, pulse pressure, rate-pressure product) are associated with poor clinical outcome in acute stroke. We assessed the effects of glyceryl trinitrate (GTN) on hemodynamic parameters and these on outcome in participants in the ENOS trial (Efficacy of Nitric Oxide in Stroke). Methods- Four thousand and eleven patients with acute stroke and raised BP were randomized within 48 hours of onset to transdermal GTN or no GTN for 7 days. Peripheral hemodynamics were measured at baseline (3 measures) and daily (2 measures) during treatment. Between-visit BP variability over days 1 to 7 (as SD) was assessed in quintiles. Functional outcome was assessed as modified Rankin Scale and cognition as telephone mini-mental state examination at day 90. Analyses were adjusted for baseline prognostic variables. Data are mean difference or odds ratios with 95% CI. Results- Increased baseline BP (diastolic, variability), heart rate, and rate-pressure product were each associated with unfavorable functional outcome at day 90. Increased between-visit systolic BP variability was associated with an unfavourable shift in modified Rankin Scale (highest quintile adjusted odds ratio, 1.65; 95% CI, 1.37-1.99), worse cognitive scores (telephone mini-mental state examination: highest quintile adjusted mean difference, -2.03; 95% CI, -2.84 to -1.22), and increased odds of death at day 90 (highest quintile adjusted odds ratio, 1.57; 95% CI, 1.12-2.19). GTN lowered BP and rate-pressure product and increased heart rate at day 1 and reduced between-visit systolic BP variability. Conclusions- Increased between-visit BP variability was associated with poor functional and cognitive outcomes and increased death 90 days after acute stroke. In addition to lowering BP and rate-pressure product, GTN reduced between-visit systolic BP variability. Agents that lower BP variability in acute stroke require further study
    corecore