290 research outputs found

    Criterion on stability for Markov processes applied to a model with jumps

    Get PDF
    We formulate and prove a new criterion for stability of e-processes. In particular we show that any e-process which is averagely bounded and concentrating is asymptotically stable. This general result is applied to a stochastic process with jumps that is a continuous counterpart of the chain considered in Szarek (Ann. Probab. 34:1849-1863, 2006)

    Passive tracer in a flow corresponding to a two dimensional stochastic Navier Stokes equations

    Full text link
    In this paper we prove the law of large numbers and central limit theorem for trajectories of a particle carried by a two dimensional Eulerian velocity field. The field is given by a solution of a stochastic Navier--Stokes system with a non-degenerate noise. The spectral gap property, with respect to Wasserstein metric, for such a system has been shown in [9]. In the present paper we show that a similar property holds for the environment process corresponding to the Lagrangian observations of the velocity. In consequence we conclude the law of large numbers and the central limit theorem for the tracer. The proof of the central limit theorem relies on the martingale approximation of the trajectory process

    On the Hausdorff dimension of invariant measures of weakly contracting on average measurable IFS

    Full text link
    We consider measures which are invariant under a measurable iterated function system with positive, place-dependent probabilities in a separable metric space. We provide an upper bound of the Hausdorff dimension of such a measure if it is ergodic. We also prove that it is ergodic iff the related skew product is.Comment: 16 pages; to appear in Journal of Stat. Phy

    On the structure of the body of states with positive partial transpose

    Full text link
    We show that the convex set of separable mixed states of the 2 x 2 system is a body of constant height. This fact is used to prove that the probability to find a random state to be separable equals 2 times the probability to find a random boundary state to be separable, provided the random states are generated uniformly with respect to the Hilbert-Schmidt (Euclidean) distance. An analogous property holds for the set of positive-partial-transpose states for an arbitrary bipartite system.Comment: 10 pages, 1 figure; ver. 2 - minor changes, new proof of lemma

    On a Unique Ergodicity of Some Markov Processes

    Get PDF
    It is proved that the sufficient condition for the uniqueness of an invariant measure for Markov processes with the strong asymptotic Feller property formulated by Hairer and Mattingly (Ann Math 164(3):993–1032, 2006) entails the existence of at most one invariant measure for e-processes as well. Some application to timehomogeneous Markov processes associated with a nonlinear heat equation driven by an impulsive noise is also given

    Hastings' additivity counterexample via Dvoretzky's theorem

    Full text link
    The goal of this note is to show that Hastings' counterexample to the additivity of minimal output von Neumann entropy can be readily deduced from a sharp version of Dvoretzky's theorem on almost spherical sections of convex bodies.Comment: 12 pages; v.2: added references, Appendix A expanded to make the paper essentially self-containe

    Advances in delimiting the Hilbert-Schmidt separability probability of real two-qubit systems

    Full text link
    We seek to derive the probability--expressed in terms of the Hilbert-Schmidt (Euclidean or flat) metric--that a generic (nine-dimensional) real two-qubit system is separable, by implementing the well-known Peres-Horodecki test on the partial transposes (PT's) of the associated 4 x 4 density matrices). But the full implementation of the test--requiring that the determinant of the PT be nonnegative for separability to hold--appears to be, at least presently, computationally intractable. So, we have previously implemented--using the auxiliary concept of a diagonal-entry-parameterized separability function (DESF)--the weaker implied test of nonnegativity of the six 2 x 2 principal minors of the PT. This yielded an exact upper bound on the separability probability of 1024/{135 pi^2} =0.76854$. Here, we piece together (reflection-symmetric) results obtained by requiring that each of the four 3 x 3 principal minors of the PT, in turn, be nonnegative, giving an improved/reduced upper bound of 22/35 = 0.628571. Then, we conclude that a still further improved upper bound of 1129/2100 = 0.537619 can be found by similarly piecing together the (reflection-symmetric) results of enforcing the simultaneous nonnegativity of certain pairs of the four 3 x 3 principal minors. In deriving our improved upper bounds, we rely repeatedly upon the use of certain integrals over cubes that arise. Finally, we apply an independence assumption to a pair of DESF's that comes close to reproducing our numerical estimate of the true separability function.Comment: 16 pages, 9 figures, a few inadvertent misstatements made near the end are correcte
    corecore