62 research outputs found

    Influence of mitochondrial genome rearrangement on cucumber leaf carbon and nitrogen metabolism

    Get PDF
    The MSC16 cucumber (Cucumis sativus L.) mitochondrial mutant was used to study the effect of mitochondrial dysfunction and disturbed subcellular redox state on leaf day/night carbon and nitrogen metabolism. We have shown that the mitochondrial dysfunction in MSC16 plants had no effect on photosynthetic CO2 assimilation, but the concentration of soluble carbohydrates and starch was higher in leaves of MSC16 plants. Impaired mitochondrial respiratory chain activity was associated with the perturbation of mitochondrial TCA cycle manifested, e.g., by lowered decarboxylation rate. Mitochondrial dysfunction in MSC16 plants had different influence on leaf cell metabolism under dark or light conditions. In the dark, when the main mitochondrial function is the energy production, the altered activity of TCA cycle in mutated plants was connected with the accumulation of pyruvate and TCA cycle intermediates (citrate and 2-OG). In the light, when TCA activity is needed for synthesis of carbon skeletons required as the acceptors for NH4+ assimilation, the concentration of pyruvate and TCA intermediates was tightly coupled with nitrate metabolism. Enhanced incorporation of ammonium group into amino acids structures in mutated plants has resulted in decreased concentration of organic acids and accumulation of Glu

    Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study

    Get PDF
    Despite current guidelines, intraperitoneal drain placement after elective colorectal surgery remains widespread. Drains were not associated with earlier detection of intraperitoneal collections, but were associated with prolonged hospital stay and increased risk of surgical-site infections.Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien-Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P < 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P < 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk

    Contingency management strategies and ideas.

    Get PDF
    This manual includes a series of “topic-focused modular applications” designed particularly for counselors and group facilitators working in substance abuse treatment programs. The collection of applications contains focused, easily accessible, and brief adaptive strategies for using rewards and star charts to reinforce goal setting, early engagement, and retention in treatment settings. Modular applications in this manual include: • Part 1 -- CM: Getting Started provides background and considerations for developing simple contingency management (CM) or reinforcement protocols for use in substance abuse treatment settings. Information from research-based interventions developed for the National Institute on Drug Abuse (NIDA) is included, along with issues to consider for protocol design, implementation, and management. This chapter is designed as a primer for treatment staff interested in simple, yet effective reinforcement strategies to strengthen motivation and engagement in treatment. • Part 2 -- StarCharts and Rewards presents ideas for a sample protocol for implementing CM with existing clients using simple incentive charts (StarCharts) and prizes. This section provides counselors and caseworkers with guidelines for getting ready for the protocol and for introducing and discussing CM participation with clients. Samples of client information sheets and informed consent forms are included, along with examples of incentive chart templates. • Part 3 -- Rewarding Effort and Initiative provides a framework for conducting a goal-setting counseling session with clients to help identify tasks related to accomplishing goals as part of a CM protocol. The client and counselor work together to set a star “value” for each task, along with timelines and how accomplishment will be objectively assessed. A scripted sample interview is included, along with a planning template for charting agreed upon tasks and how stars will be awarded. • CM Bibliograph

    The effects of cavitation using the vibratory system

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/7848/5/bad4180.0001.001.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/7848/4/bad4180.0001.001.tx

    In comparison with nitrate nutrition, ammonium nutrition increases growth of the frostbite1 Arabidopsis mutant

    No full text
    Ammonium nutrition inhibits the growth of many plant species, including Arabidopsis thaliana. The toxicity of ammonium is associated with changes in the cellular redox state. The cellular oxidant/antioxidant balance is controlled by mitochondrial electron transport chain. In this study, we analysed the redox metabolism of frostbite1 (fro1) plants, which lack mitochondrial respiratory chain complex I. Surprisingly, the growth of fro1 plants increased under ammonium nutrition. Ammonium nutrition increased the reduction level of pyridine nucleotides in the leaves of wild-type plants, but not in the leaves of fro1 mutant plants. The observed higher activities of type II NADH dehydrogenases and cytochrome c oxidase in the mitochondrial electron transport chain may improve the energy metabolism of fro1 plants grown on ammonium. Additionally, the observed changes in reactive oxygen species (ROS) metabolism in the apoplast may be important for determining the growth of fro1 under ammonium nutrition. Moreover, bioinformatic analyses showed that the gene expression changes in fro1 plants significantly overlap with the changes previously observed in plants with a modified apoplastic pH. Overall, the results suggest a pronounced connection between the mitochondrial redox system and the apoplastic pH and ROS levels, which may modify cell wall plasticity and influence growth. In this paper, we analysed the redox metabolism of frostbite1 (fro1) plants lacking Complex I under ammonium nutrition. We showed that, although ammonium leads to stress in wild type plants, ammonium does not cause reductive stress in fro1 plants. Our experimental and bioinformatic analyses indicated that mtETC dysfunction strongly influences apoplastic reactive oxygen species content and pH, and suggested that the faster growth of fro1 plants under ammonium nutrition probably results from modification of the cell wall

    Respiratory burst oxidases and apoplastic peroxidases facilitate ammonium syndrome development in Arabidopsis

    No full text
    Ammonium-nitrogen (NH4+) nutrition is linked to metabolic over-reduction for plants. The characteristic symptom of sole NH4+ nutrition is growth suppression, signifying this condition as the ammonium syndrome. In the present study, we investigated the mechanism of perception of high NH4+ conditions in Arabidopsis thaliana plants by examining apoplastic reactive oxygen species (ROS) metabolism. Major enzyme activity and a special pattern of expression of NADPH-dependent respiratory burst oxidases (RBOH) was found in Arabidopsis individuals cultured under NH4+ as the sole nitrogen source. This oxidative burst is independent of RBOHD/F expression and does not activate typical intracellular signalling pathways. In addition, elevated superoxide dismutase and apoplastic secretory peroxidase activities contributed to hydrogen peroxide (H2O2) accumulation in plants exposed to NH4+ nutrition. Consequently, higher H2O2 contents were determined in the extracellular space and were localised cytochemically. H2O2 is a substrate for cell wall cross-linking peroxidases, which showed enhanced activity in the presence of NH4+. Increase of cell wall polymerisation, could in turn inhibit cell elongation and slow down growth, as observed under NH4+ toxicity

    Short-term ammonium supply induces cellular defence to prevent oxidative stress in Arabidopsis leaves

    No full text
    Plants can assimilate nitrogen from soil pools of both ammonium and nitrate, and the relative levels of these two nitrogen sources are highly variable in soil. Long-term ammonium nutrition is known to cause damage to Arabidopsis that has been linked to mitochondrial oxidative stress. Using hydroponic cultures, we analysed the consequences of rapid shifts between nitrate and ammonium nutrition. This did not induce growth retardation, showing that Arabidopsis can compensate for the changes in redox metabolism associated with the variations in nitrogen redox status. During the first 3h of ammonium treatment, we observed distinct transient shifts in reactive oxygen species (ROS), low-mass antioxidants, ROS-scavenging enzymes, and mitochondrial alternative electron transport pathways, indicating rapid but temporally separated changes in chloroplastic, mitochondrial and cytosolic ROS metabolism. The fast induction of antioxidant defences significantly lowered intracellular H2O2 levels, and thus protected Arabidopsis leaves from oxidative stress. On the other hand elevated extracellular ROS production in response to ammonium supply may be involved in signalling. The response pattern displays an intricate plasticity of Arabidopsis redox metabolism to minimise stress in responses to nutrient changes

    Mitochondrial NAD(P)H oxidation pathways and nitrate/ammonium redox balancing in plants

    No full text
    Plant mitochondrial oxidative phosphorylation is characterised by alternative electron transport pathways with different energetic efficiencies, allowing turnover of cellular redox compounds like NAD(P)H. These electron transport chain pathways are profoundly affected by soil nitrogen availability, most commonly as oxidized nitrate (NO3 −) and/or reduced ammonium (NH4 +). The bioenergetic strategies involved in assimilating different N sources can alter redox homeostasis and antioxidant systems in different cellular compartments, including the mitochondria and the cell wall. Conversely, changes in mitochondrial redox systems can affect plant responses to N. This review explores the integration between N assimilation, mitochondrial redox metabolism, and apoplast metabolism
    corecore