292 research outputs found

    Small Wind Turbines: Specification, Design, and Economic Evaluation

    Get PDF
    In this work, we consider various aspects of small wind turbines’ (SWTs) design and operation. First, an extensive literature study is presented by considering SWTs specification, market statistics, the smart grid, and the prosumer concepts as well as the most important parameters affecting the efficiency of wind turbines. Then, both the literature review and series of coupled numerical simulations investigating impact of the chosen design solutions on small wind turbine operation are performed. It allowed objective evaluation of different design approaches, which in turn enabled the systematic identification of actual limitations as well as the opportunities for specific design solutions of SWTs: horizontal axis wind turbines (HAWTs) and vertical axis wind turbines (VAWTs); the rotor position in relation to the tower (upwind vs. downwind); and diffusor-augmented wind turbine (DAWT). Additionally, an economic evaluation is carried with the use of an advanced numerical Weather Research & Forecasting (WRF) model. It is shown that auxiliary power generation using privately owned SWTs can be an economically viable option. Finally, a set of design goals for future SWTs is formulated based on the performed numerical analyses

    CAV3 mutation in a patient with transient hyperCKemia and myalgia

    Get PDF
    Mutations in caveolin-3 (CAV3) can lead to different clinical phenotypes affecting skeletal or cardiac muscles. Here, we describe a patient with Klinefelter syndrome, ulcerative colitis and Sjögren syndrome, who developed transient hyperCKemia, myalgia and mild muscular weakness. Using whole exome sequencing (WES), a missense mutation G169A was found in the CAV3 gene. In addition, we identified a homozygous frameshift deletion in MS4A12 that may contribute to inflammatory bowel disease, further demonstrating usefulness of WES in dual molecular diagnoses

    The Dictyostelium genome encodes numerous RasGEFs with multiple biological roles

    Get PDF
    BACKGROUND: Dictyostelium discoideum is a eukaryote with a simple lifestyle and a relatively small genome whose sequence has been fully determined. It is widely used for studies on cell signaling, movement and multicellular development. Ras guanine-nucleotide exchange factors (RasGEFs) are the proteins that activate Ras and thus lie near the top of many signaling pathways. They are particularly important for signaling in development and chemotaxis in many organisms, including Dictyostelium. RESULTS: We have searched the genome for sequences encoding RasGEFs. Despite its relative simplicity, we find that the Dictyostelium genome encodes at least 25 RasGEFs, with a few other genes encoding only parts of the RasGEF consensus domains. All appear to be expressed at some point in development. The 25 genes include a wide variety of domain structures, most of which have not been seen in other organisms. The LisH domain, which is associated with microtubule binding, is seen particularly frequently; other domains that confer interactions with the cytoskeleton are also common. Disruption of a sample of the novel genes reveals that many have clear phenotypes, including altered morphology and defects in chemotaxis, slug phototaxis and thermotaxis. CONCLUSION: These results suggest that the unexpectedly large number of RasGEF genes reflects an evolutionary expansion of the range of Ras signaling rather than functional redundancy or the presence of multiple pseudogenes

    Randomized Interventional Study on Prediction of Preeclampsia/Eclampsia in Women With Suspected Preeclampsia: INSPIRE.

    Get PDF
    The ratio of maternal serum sFlt-1 (soluble fms-like tyrosine kinase 1) to PlGF (placental growth factor) has been used retrospectively to rule out the occurrence of preeclampsia, a pregnancy hypertensive disorder, within 7 days in women presenting with clinical suspicion of preeclampsia. A prospective, interventional, parallel-group, randomized clinical trial evaluated the use of sFlt-1/PlGF ratio in women presenting with suspected preeclampsia. Women were assigned to reveal (sFlt-1/PlGF result known to clinicians) or nonreveal (result unknown) arms. A ratio cutoff of 38 was used to define low (≤38) and elevated risk (>38) of developing the condition in the subsequent week. The primary end point was hospitalization within 24 hours of the test. Secondary end points were development of preeclampsia and other adverse maternal-fetal outcomes. We recruited 370 women (186 reveal versus 184 nonreveal). Preeclampsia occurred in 85 women (23%). The number of admissions was not significantly different between groups (n=48 nonreveal versus n=60 reveal; P=0.192). The reveal trial arm admitted 100% of the cases that developed preeclampsia within 7 days, whereas the nonreveal admitted 83% (P=0.038). Use of the test yielded a sensitivity of 100% (95% CI, 85.8-100) and a negative predictive value of 100% (95% CI, 97.1-100) compared with a sensitivity of 83.3 (95% CI, 58.6-96.4) and negative predictive value of 97.8 (95% CI, 93.7-99.5) with clinical practice alone. Use of the sFlt-1/PlGF ratio significantly improved clinical precision without changing the admission rate. Clinical Trial Registration- URL: http://www.isrctn.com. Unique identifier: ISRCTN87470468

    Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers.

    Get PDF
    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium. Here we test this assumption in three types of Drosophila epithelium; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells seems to be driven by lateral adhesion, which pulls cells born outside the epithelial layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions.The authors are grateful to R. Nieuwburg, the St Johnston group, and other Gurdon Institute members for suggestions. We thank the Bloomington Stock Center, J. Knoblich, and the TRiP at Harvard Medical School (NIH/NIGMS R01-GM084947) for fly stocks. We thank N. Lowe for technical assistance. This work was supported by a Wellcome Trust Principal Fellowship to D.St.J. (080007), and by core support from the Wellcome Trust (092096) and Cancer Research UK (A14492). D.T.B. was supported by a Marie Curie Fellowship and the Wellcome Trust. H.E.L. was supported by a Herchel Smith Studentship.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/ncb324

    Proteome-based plasma biomarkers for Alzheimer's disease

    Get PDF
    Alzheimer's disease is a common and devastating disease for which there is no readily available biomarker to aid diagnosis or to monitor disease progression. Biomarkers have been sought in CSF but no previous study has used two-dimensional gel electrophoresis coupled with mass spectrometry to seek biomarkers in peripheral tissue. We performed a case-control study of plasma using this proteomics approach to identify proteins that differ in the disease state relative to aged controls. For discovery-phase proteomics analysis, 50 people with Alzheimer's dementia were recruited through secondary services and 50 normal elderly controls through primary care. For validation purposes a total of 511 subjects with Alzheimer's disease and other neurodegenerative diseases and normal elderly controls were examined. Image analysis of the protein distribution of the gels alone identifies disease cases with 56% sensitivity and 80% specificity. Mass spectrometric analysis of the changes observed in two-dimensional electrophoresis identified a number of proteins previously implicated in the disease pathology, including complement factor H (CFH) precursor and α-2-macroglobulin (α- 2M). Using semi-quantitative immunoblotting, the elevation of CFH and α- 2M was shown to be specific for Alzheimer's disease and to correlate with disease severity although alternative assays would be necessary to improve sensitivity and specificity. These findings suggest that blood may be a rich source for biomarkers of Alzheimer's disease and that CFH, together with other proteins such as α- 2M may be a specific markers of this illness. © 2006 The Author(s).link_to_subscribed_fulltex

    Novel parent-of-origin-specific differentially methylated loci on chromosome 16

    Get PDF
    BACKGROUND: Congenital malformations associated with maternal uniparental disomy of chromosome 16, upd(16)mat, resemble those observed in newborns with the lethal developmental lung disease, alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Interestingly, ACDMPV-causative deletions, involving FOXF1 or its lung-specific upstream enhancer at 16q24.1, arise almost exclusively on the maternally inherited chromosome 16. Given the phenotypic similarities between upd(16)mat and ACDMPV, together with parental allelic bias in ACDMPV, we hypothesized that there may be unknown imprinted loci mapping to chromosome 16 that become functionally unmasked by chromosomal structural variants. RESULTS: To identify parent-of-origin biased DNA methylation, we performed high-resolution bisulfite sequencing of chromosome 16 on peripheral blood and cultured skin fibroblasts from individuals with maternal or paternal upd(16) as well as lung tissue from patients with ACDMPV-causative 16q24.1 deletions and a normal control. We identified 22 differentially methylated regions (DMRs) with ≥ 5 consecutive CpG methylation sites and varying tissue-specificity, including the known DMRs associated with the established imprinted gene ZNF597 and DMRs supporting maternal methylation of PRR25, thought to be paternally expressed in lymphoblastoid cells. Lastly, we found evidence of paternal methylation on 16q24.1 near LINC01082 mapping to the FOXF1 enhancer. CONCLUSIONS: Using high-resolution bisulfite sequencing to evaluate DNA methylation across chromosome 16, we found evidence for novel candidate imprinted loci on chromosome 16 that would not be evident in array-based assays and could contribute to the birth defects observed in patients with upd(16)mat or in ACDMPV
    • …
    corecore