5,559 research outputs found

    The Anticorrelated Nature of the Primary and Secondary Eclipse Timing Variations for the Kepler Contact Binaries

    Get PDF
    We report on a study of eclipse timing variations in contact binary systems, using long-cadence lightcurves in the Kepler archive. As a first step, 'observed minus calculated' (O-C) curves were produced for both the primary and secondary eclipses of some 2000 Kepler binaries. We find ~390 short-period binaries with O-C curves that exhibit (i) random-walk like variations or quasi-periodicities, with typical amplitudes of +/- 200-300 seconds, and (ii) anticorrelations between the primary and secondary eclipse timing variations. We present a detailed analysis and results for 32 of these binaries with orbital periods in the range of 0.35 +/- 0.05 days. The anticorrelations observed in their O-C curves cannot be explained by a model involving mass transfer, which among other things requires implausibly high rates of ~0.01 M_sun per year. We show that the anticorrelated behavior, the amplitude of the O-C delays, and the overall random-walk like behavior can be explained by the presence of a starspot that is continuously visible around the orbit and slowly changes its longitude on timescales of weeks to months. The quasi-periods of ~50-200 days observed in the O-C curves suggest values for k, the coefficient of the latitude dependence of the stellar differential rotation, of ~0.003-0.013.Comment: Published in The Astrophysical Journal, 2013, Vol. 774, p.81; 14 pages, 12 figures, and 2 table

    Factory production control (FPC) and its requirements for the metallurgical industry

    Get PDF
    The article the requirements of the Factory Production Control (FPC) dedicated to construction products (including metal, i.e. ribbed bars, steel pipes, shapes, sheets and metal constructions) introduced to the single market of the European Union, was presented. Meeting the requirements of legal regulations with regard to these products is an important issue for metallurgical companies placing their products on the EU market. These enterprises are required to effectively implement and supervise the FPC system, supervised by a party independent of the manufacturer (third party). The aim of the article is to present the requirements of the FPC and refer them to the requirements of industry standards for metal products – shapes

    Factory production control (FPC) and its requirements for the metallurgical industry

    Get PDF
    The article the requirements of the Factory Production Control (FPC) dedicated to construction products (including metal, i.e. ribbed bars, steel pipes, shapes, sheets and metal constructions) introduced to the single market of the European Union, was presented. Meeting the requirements of legal regulations with regard to these products is an important issue for metallurgical companies placing their products on the EU market. These enterprises are required to effectively implement and supervise the FPC system, supervised by a party independent of the manufacturer (third party). The aim of the article is to present the requirements of the FPC and refer them to the requirements of industry standards for metal products – shapes

    Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor

    No full text
    Kinetic rate data for steam methane reforming (SMR) coupled with water gas shift (WGS) over an 18 wt. % NiO/α-Al2O3 catalyst are presented in the temperature range of 300-700 °C at 1 bar. The experiments were performed in a plug flow reactor under the conditions of diffusion limitations and away from the equilibrium conditions. The kinetic model was implemented in a one-dimensional heterogeneous mathematical model of catalytic packed bed reactor, developed on gPROMS model builder 4.1.0®. The mathematical model of SMR process was simulated, and the model was validated by comparing the results with the experimental values. The simulation results were in excellent agreement with the experimental results. The effect of various operating parameters such as temperature, pressure and steam to carbon ratio on fuel and water conversion (%), H2 yield (wt. % of CH4) and H2 purity was modelled and compared with the equilibrium values

    Extended Weak Coupling Limit for Friedrichs Hamiltonians

    Full text link
    We study a class of self-adjoint operators defined on the direct sum of two Hilbert spaces: a finite dimensional one called sometimes a ``small subsystem'' and an infinite dimensional one -- a ``reservoir''. The operator, which we call a ``Friedrichs Hamiltonian'', has a small coupling constant in front of its off-diagonal term. It is well known that under some conditions in the weak coupling limit the appropriately rescaled evolution in the interaction picture converges to a contractive semigroup when restricted to the subsystem. We show that in this model, the properly renormalized and rescaled evolution converges on the whole space to a new unitary evolution, which is a dilation of the above mentioned semigroup. Similar results have been studied before \cite{AFL} in more complicated models and they are usually referred to as "stochastic Limit".Comment: changes in notation and title, minor correction

    Modelling of H2 production via sorption enhanced steam methane reforming at reduced pressures for small scale applications

    Get PDF
    The production of H2 via sorption enhanced steam reforming (SE-SMR) of CH4 using 18 wt. % Ni/ Al2O3 catalyst and CaO as a CO2-sorbent was simulated for an adiabatic packed bed reactor at the reduced pressures typical of small and medium scale gas producers and H2 end users. To investigate the behaviour of reactor model along the axial direction, the mass, energy and momentum balance equations were incorporated in the gPROMS modelbuilder®. The effect of operating conditions such as temperature, pressure, steam to carbon ration (S/C) and gas mass flow velocity (Gs) was studied under the low-pressure conditions (2 – 7 bar). Independent equilibrium based software, chemical equilibrium with application (CEA), was used to compare the simulation results with the equilibrium data. A good agreement was obtained in terms of CH4 conversion, H2 yield (wt. % of CH4 feed), purity of H2 and CO2 capture for the lowest (Gs) representing conditions close to equilibrium under a range of operating temperatures pressures, feed steam to carbon ratio. At Gs of 3.5 kg m-2s-1, 3 bar, 923 K and S/C of 3, CH4 conversion and H2 purity were up to 89% and 86% respectively compared to 44% and 63% in the conventional reforming process
    corecore