25 research outputs found

    Soft X-ray Absorption and Photoemission Studies of Ferromagnetic Mn-Implanted 3CC-SiC

    Full text link
    We have performed x-ray photoemission spectroscopy (XPS), x-ray absorption spectroscopy (XAS), and resonant photoemission spectroscopy (RPES) measurements of Mn-implanted 3CC-SiC (3CC-SiC:Mn) and carbon-incorporated Mn5_{5}Si2_{2} (Mn5_{5}Si2_{2}:C). The Mn 2pp core-level XPS and XAS spectra of 3CC-SiC:Mn and Mn5_{5}Si2_{2}:C were similar to each other and showed "intermediate" behaviors between the localized and itinerant Mn 3dd states. The intensity at the Fermi level was found to be suppressed in 3CC-SiC:Mn compared with Mn5_{5}Si2_{2}:C. These observations are consistent with the formation of Mn5_{5}Si2_{2}:C clusters in the 3CC-SiC host, as observed in a recent transmission electron microscopy study.Comment: 4 pages, 3 figure

    Large area buffer-free graphene on non-polar (001) cubic silicon carbide

    No full text
    Graphene is, due to its extraordinary properties, a promising material for future electronic applications. A common process for the production of large area epitaxial graphene is a high temperature annealing process of atomically flat surfaces from hexagonal silicon carbide. This procedure is very promising but has the drawback of the formation of a buffer layer consisting of a graphene-like sheet, which is covalently bound to the substrate. This buffer layer degenerates the properties of the graphene above and needs to be avoided. We are presenting the combination of a high temperature process for the graphene production with a newly developed substrate of (0 0 1)-oriented cubic silicon carbide. This combination is a promising candidate to be able to supply large area homogenous epitaxial graphene on silicon carbide without a buffer layer. We are presenting the new substrate and first samples of epitaxial graphene on them. Results are shown using low energy electron microscopy and diffraction, photoelectron angular distribution and X-ray photoemission spectroscopy. All these measurements indicate the successful growth of a buffer free few layer graphene on a cubic silicon carbide surface. On our large area samples also the epitaxial relationship between the cubic substrate and the hexagonal graphene could be clarified. (C) 2014 Elsevier Ltd. All rights reserved

    Growth of large area monolayer graphene on 3C-SiC and a comparison with other SiC polytypes

    No full text
    Epitaxial graphene growth was performed on the Si-terminated face of 4H-, 6H-, and 3C-SiC substrates by silicon sublimation from SiC in argon atmosphere at a temperature of 2000 degrees C. Graphene surface morphology, thickness and band structure have been assessed by using atomic force microscopy, low-energy electron microscopy, and angle-resolved photoemission spectroscopy, respectively. Differences in the morphology of the graphene layers on different SiC polytypes is related mainly to the minimization of the terrace surface energy during the step bunching process. The uniformity of silicon sublimation is a decisive factor for obtaining large area homogenous graphene. It is also shown that a lower substrate surface roughness results in more uniform step bunching with a lower distribution of step heights and consequently better quality of the grown graphene. Large homogeneous areas of graphene monolayers (over 50 x 50 mu m(2)) have been grown on 3C-SiC (1 1 1) substrates. The comparison with the other polytypes suggests a similarity in the surface behaviour of 3C- and 6H-SiC. (C) 2013 Elsevier Ltd. All rights reserved

    Engineering and metrology of epitaxial graphene

    No full text
    Here we review the concepts and technologies, in particular photochemical gating, which contributed to the recent progress in quantum Hall resistance metrology based on large scale epitaxial graphene on silicon carbide
    corecore