22,192 research outputs found
The LSE identity project. House of Lords : All party briefing : "Nothing to hide, nothing to fear”
The original amendment on cost information, put forward in the House of Lords, sought to address a widely held concern about the government’s unwillingness to be open about the likely costs associated with implementing the identity cards scheme. These concerns are shared by some in the Lords, industry and by the LSE, whose initial alternative costings fuelled the concerns of the Lords over the limited information made available to them. The proposed amendment for the House of Commons does not seek to address this underlying issue and, indeed, the provisions of clause 4, are likely to repeat the same, unnecessary secrecy that the Lords were seeking to explore
espida Handbook: Expressing project costs and benefits in a systematic way for investment in information and IT
DIDET: Digital libraries for distributed, innovative design education and teamwork. Final project report
The central goal of the DIDET Project was to enhance student learning opportunities by enabling them to partake in global, team based design engineering projects, in which they directly experience different cultural contexts and access a variety of digital information sources via a range of appropriate technology. To achieve this overall project goal, the project delivered on the following objectives: 1. Teach engineering information retrieval, manipulation, and archiving skills to students studying on engineering degree programs. 2. Measure the use of those skills in design projects in all years of an undergraduate degree program. 3. Measure the learning performance in engineering design courses affected by the provision of access to information that would have been otherwise difficult to access. 4. Measure student learning performance in different cultural contexts that influence the use of alternative sources of information and varying forms of Information and Communications Technology. 5. Develop and provide workshops for staff development. 6. Use the measurement results to annually redesign course content and the digital libraries technology. The overall DIDET Project approach was to develop, implement, use and evaluate a testbed to improve the teaching and learning of students partaking in global team based design projects. The use of digital libraries and virtual design studios was used to fundamentally change the way design engineering is taught at the collaborating institutions. This was done by implementing a digital library at the partner institutions to improve learning in the field of Design Engineering and by developing a Global Team Design Project run as part of assessed classes at Strathclyde, Stanford and Olin. Evaluation was carried out on an ongoing basis and fed back into project development, both on the class teaching model and the LauLima system developed at Strathclyde to support teaching and learning. Major findings include the requirement to overcome technological, pedagogical and cultural issues for successful elearning implementations. A need for strong leadership has been identified, particularly to exploit the benefits of cross-discipline team working. One major project output still being developed is a DIDET Project Framework for Distributed Innovative Design, Education and Teamwork to encapsulate all project findings and outputs. The project achieved its goal of embedding major change to the teaching of Design Engineering and Strathclyde's new Global Design class has been both successful and popular with students
Safer clinical systems : interim report, August 2010
Safer Clinical Systems is the Health Foundation’s new five year programme of work to test and demonstrate ways to improve healthcare systems and processes, to develop safer systems that improve patient safety. It builds on learning from the Safer Patients Initiative (SPI) and models of system improvement from both healthcare and other industries.
Learning from the SPI highlighted the need to take a clinical systems approach to improving safety. SPI highlighted that many hospitals struggle to implement improvement in clinical areas due to inherent problems with support mechanisms. Clinical processes and systems, rather than individuals, are often the contributors to breakdown in patient safety. The Safer Clinical Systems programme aimed to measure the reliability of clinical processes, identify defects within those processes, and identify the systems that result in those defects. Methods to improve system reliability were then to be tested and re-developed in order to reduce the risk of harm being caused to patients. Such system-level awareness should lead to improvements in other patient care pathways.
The relationship between system reliability and actual harm is challenging to identify and measure. Specific, well-defined, small-scale processes have been used in other programmes, and system reliability has been shown to have a direct causal relationship with harm (e.g. care bundle compliance in an intensive care unit can reduce the incidence of ventilator-associated pneumonia). However, it has become evident that harm can be caused by a variety of factors over time; when working in broader, more complex and dynamic systems, change in outcome can be difficult to attribute to specific improvements and difficulties are also associated with relating evidence to resulting harm.
The overall aim of Phase 1 of the Safer Clinical Systems programme was to demonstrate proof-of-concept that using a systems-based approach could contribute to improved patient safety. In Phase 1, experienced NHS teams from four locations worked together with expert advisers to co-design the Safer Clinical Systems programme
INSPIRAL: investigating portals for information resources and learning. Final project report
INSPIRAL's aims were to identify and analyse, from the perspective of the UK HE learner, the nontechnical, institutional and end-user issues with regard to linking VLEs and digital libraries, and to make recommendations for JISC strategic planning and investment. INSPIRAL's objectives -To identify key stakeholders with regard to the linkage of VLEs, MLEs and digital libraries -To identify key stakeholder forum points and dissemination routes -To identify the relevant issues, according to the stakeholders and to previous research, pertaining to the interaction (both possible and potential) between VLEs/MLEs and digital libraries -To critically analyse identified issues, based on stakeholder experience and practice; output of previous and current projects; and prior and current research -To report back to JISC and to the stakeholder communities, with results situated firmly within the context of JISC's strategic aims and objectives
Apollo Lunar Surface Experiments Package (ALSEP) two years of lunar science
A non-technical look back at the first two years of ALSEP
A V-Diagram for the Design of Integrated Health Management for Unmanned Aerial Systems
Designing Integrated Vehicle Health Management (IVHM) for Unmanned Aerial Systems (UAS) is inherently complex. UAS are a system of systems (SoS) and IVHM is a product-service, thus the designer has to take into account many factors, such as: the design of the other systems of the UAS (e.g. engines, structure, communications), the split of functions between elements of the UAS, the intended operation/mission of the UAS, the cost verses benefit of monitoring a system/component/part, different techniques for monitoring the health of the UAS, optimizing the health of the fleet and not just the individual UAS, amongst others. The design of IVHM cannot sit alongside, or after, the design of UAS, but itself be integrated into the overall design to maximize IVHM’s potential.
Many different methods exist to help design complex products and manage the process. One method used is the V-diagram which is based on three concepts: decomposition & definition; integration & testing; and verification & validation. This paper adapts the V-diagram so that it can be used for designing IVHM for UAS. The adapted v-diagram splits into different tracks for the different system elements of the UAS and responses to health states (decomposition and definition). These tracks are then combined into an overall IVHM provision for the UAS (integration and testing), which can be verified and validated. The stages of the adapted V-diagram can easily be aligned with the stages of the V-diagram being used to design the UAS bringing the design of the IVHM in step with the overall design process. The adapted V-diagram also allows the design IVHM for a UAS to be broken down in to smaller tasks which can be assigned to people/teams with the relevant competencies. The adapted V-diagram could also be used to design IVHM for other SoS and other vehicles or products
The 2008 rice crisis: shock and new challenges
West Africa currently imports 5.2 million tonnes of rice, compared with 1.7 million tonnes in the early 1990s, and is only able to cover 60% of its needs despite possessing considerable rice-growing potential. The region will nevertheless for the foreseeable future remain dependent on an international market in which prices are structurally rising and which is increasingly volatile. This paper analyses the crisis of 2008, new trends and policy responses to address new challenges in the rice sector. It is based on a study carried out between May and December 2010 by CILSS, CIRAD, FAO, FEWS NET and the WF
- …
