178 research outputs found

    VERITE: A Robust Benchmark for Multimodal Misinformation Detection Accounting for Unimodal Bias

    Full text link
    Multimedia content has become ubiquitous on social media platforms, leading to the rise of multimodal misinformation (MM) and the urgent need for effective strategies to detect and prevent its spread. In recent years, the challenge of multimodal misinformation detection (MMD) has garnered significant attention by researchers and has mainly involved the creation of annotated, weakly annotated, or synthetically generated training datasets, along with the development of various deep learning MMD models. However, the problem of unimodal bias in MMD benchmarks -- where biased or unimodal methods outperform their multimodal counterparts on an inherently multimodal task -- has been overlooked. In this study, we systematically investigate and identify the presence of unimodal bias in widely-used MMD benchmarks (VMU-Twitter, COSMOS), raising concerns about their suitability for reliable evaluation. To address this issue, we introduce the "VERification of Image-TExtpairs" (VERITE) benchmark for MMD which incorporates real-world data, excludes "asymmetric multimodal misinformation" and utilizes "modality balancing". We conduct an extensive comparative study with a Transformer-based architecture that shows the ability of VERITE to effectively address unimodal bias, rendering it a robust evaluation framework for MMD. Furthermore, we introduce a new method -- termed Crossmodal HArd Synthetic MisAlignment (CHASMA) -- for generating realistic synthetic training data that preserve crossmodal relations between legitimate images and false human-written captions. By leveraging CHASMA in the training process, we observe consistent and notable improvements in predictive performance on VERITE; with a 9.2% increase in accuracy. We release our code at: https://github.com/stevejpapad/image-text-verificatio

    ReSEED: Social Event dEtection Dataset

    Get PDF
    Reuter T, Papadopoulos S, Mezaris V, Cimiano P. ReSEED: Social Event dEtection Dataset. In: MMSys '14. Proceedings of the 5th ACM Multimedia Systems Conference . New York: ACM; 2014: 35-40.Nowadays, digital cameras are very popular among people and quite every mobile phone has a build-in camera. Social events have a prominent role in people’s life. Thus, people take pictures of events they take part in and more and more of them upload these to well-known online photo community sites like Flickr. The number of pictures uploaded to these sites is still proliferating and there is a great interest in automatizing the process of event clustering so that every incoming (picture) document can be assigned to the corresponding event without the need of human interaction. These social events are defined as events that are planned by people, attended by people and for which the social multimedia are also captured by people. There is an urgent need to develop algorithms which are capable of grouping media by the social events they depict or are related to. In order to train, test, and evaluate such algorithms and frameworks, we present a dataset that consists of about 430,000 photos from Flickr together with the underlying ground truth consisting of about 21,000 social events. All the photos are accompanied by their textual metadata. The ground truth for the event groupings has been derived from event calendars on the Web that have been created collaboratively by people. The dataset has been used in the Social Event Detection (SED) task that was part of the MediaEval Benchmark for Multimedia Evaluation 2013. This task required participants to discover social events and organize the related media items in event-specific clusters within a collection of Web multimedia documents. In this paper we describe how the dataset has been collected and the creation of the ground truth together with a proposed evaluation methodology and a brief description of the corresponding task challenge as applied in the context of the Social Event Detection task

    Mitigating Viewer Impact from Disturbing Imagery using AI Filters: A User-Study

    Full text link
    Exposure to disturbing imagery can significantly impact individuals, especially professionals who encounter such content as part of their work. This paper presents a user study, involving 107 participants, predominantly journalists and human rights investigators, that explores the capability of Artificial Intelligence (AI)-based image filters to potentially mitigate the emotional impact of viewing such disturbing content. We tested five different filter styles, both traditional (Blurring and Partial Blurring) and AI-based (Drawing, Colored Drawing, and Painting), and measured their effectiveness in terms of conveying image information while reducing emotional distress. Our findings suggest that the AI-based Drawing style filter demonstrates the best performance, offering a promising solution for reducing negative feelings (-30.38%) while preserving the interpretability of the image (97.19%). Despite the requirement for many professionals to eventually inspect the original images, participants suggested potential strategies for integrating AI filters into their workflow, such as using AI filters as an initial, preparatory step before viewing the original image. Overall, this paper contributes to the development of a more ethically considerate and effective visual environment for professionals routinely engaging with potentially disturbing imagery

    AdaCC: cumulative cost-sensitive boosting for imbalanced classification

    Get PDF
    Class imbalance poses a major challenge for machine learning as most supervised learning models might exhibit bias towards the majority class and under-perform in the minority class. Cost-sensitive learning tackles this problem by treating the classes differently, formulated typically via a user-defined fixed misclassification cost matrix provided as input to the learner. Such parameter tuning is a challenging task that requires domain knowledge and moreover, wrong adjustments might lead to overall predictive performance deterioration. In this work, we propose a novel cost-sensitive boosting approach for imbalanced data that dynamically adjusts the misclassification costs over the boosting rounds in response to model’s performance instead of using a fixed misclassification cost matrix. Our method, called AdaCC, is parameter-free as it relies on the cumulative behavior of the boosting model in order to adjust the misclassification costs for the next boosting round and comes with theoretical guarantees regarding the training error. Experiments on 27 real-world datasets from different domains with high class imbalance demonstrate the superiority of our method over 12 state-of-the-art cost-sensitive boosting approaches exhibiting consistent improvements in different measures, for instance, in the range of [0.3–28.56%] for AUC, [3.4–21.4%] for balanced accuracy, [4.8–45%] for gmean and [7.4–85.5%] for recall

    AdaCC: Cumulative Cost-Sensitive Boosting for Imbalanced Classification

    Get PDF
    Class imbalance poses a major challenge for machine learning as most supervised learning models might exhibit bias towards the majority class and under-perform in the minority class. Cost-sensitive learning tackles this problem by treating the classes differently, formulated typically via a user-defined fixed misclassification cost matrix provided as input to the learner. Such parameter tuning is a challenging task that requires domain knowledge and moreover, wrong adjustments might lead to overall predictive performance deterioration. In this work, we propose a novel cost-sensitive boosting approach for imbalanced data that dynamically adjusts the misclassification costs over the boosting rounds in response to model's performance instead of using a fixed misclassification cost matrix. Our method, called AdaCC, is parameter-free as it relies on the cumulative behavior of the boosting model in order to adjust the misclassification costs for the next boosting round and comes with theoretical guarantees regarding the training error. Experiments on 27 real-world datasets from different domains with high class imbalance demonstrate the superiority of our method over 12 state-of-the-art cost-sensitive boosting approaches exhibiting consistent improvements in different measures, for instance, in the range of [0.3%-28.56%] for AUC, [3.4%-21.4%] for balanced accuracy, [4.8%-45%] for gmean and [7.4%-85.5%] for recall.Comment: 30 page

    Web Video Verification using Contextual Cues

    Get PDF
    As news agencies and the public increasingly rely on User-Generated Content, content verification is vital for news producers and consumers alike. We present a novel approach for verifying Web videos by analyzing their online context. It is based on supervised learning on contextual features: one feature set is based on an existing approach for tweet verification adapted to video comments. The other is based on video metadata, such as the video description, likes/dislikes, and uploader information. We evaluate both on a dataset of real and fake videos from YouTube, and demonstrate their effectiveness (F-scores: 0.82, 0.79). We then explore their complementarity and show that under an optimal fusion scheme, the classifier would reach an F-score of 0.9. We finally study the performance of the classifier through time, as more comments accumulate, emulating a real-time verification setting
    • …
    corecore