49 research outputs found

    Claudin-11 in health and disease: implications for myelin disorders, hearing, and fertility

    Get PDF
    Claudin-11 plays a critical role in multiple physiological processes, including myelination, auditory function, and spermatogenesis. Recently, stop-loss mutations in CLDN11 have been identified as a novel cause of hypomyelinating leukodystrophy (HLD22). Understanding the multifaceted roles of claudin-11 and the potential pathogenic mechanisms in HLD22 is crucial for devising targeted therapeutic strategies. This review outlines the biological roles of claudin-11 and the implications of claudin-11 loss in the context of the Cldn11 null mouse model. Additionally, HLD22 and proposed pathogenic mechanisms, such as endoplasmic reticulum stress, will be discussed

    Arginine:glycine amidinotransferase (AGAT) deficiency: Clinical features and long term outcomes in 16 patients diagnosed worldwide

    Get PDF
    Abstract Background Arginine:glycine aminotransferase (AGAT) (GATM) deficiency is an autosomal recessive inborn error of creative synthesis. Objective We performed an international survey among physicians known to treat patients with AGAT deficiency, to assess clinical characteristics and long-term outcomes of this ultra-rare condition. Results 16 patients from 8 families of 8 different ethnic backgrounds were included. 1 patient was asymptomatic when diagnosed at age 3 weeks. 15 patients diagnosed between 16 months and 25 years of life had intellectual disability/developmental delay (IDD). 8 patients also had myopathy/proximal muscle weakness. Common biochemical denominators were low/undetectable guanidinoacetate (GAA) concentrations in urine and plasma, and low/undetectable cerebral creatine levels. 3 families had protein truncation/null mutations. The rest had missense and splice mutations. Treatment with creatine monohydrate (100–800 mg/kg/day) resulted in almost complete restoration of brain creatine levels and significant improvement of myopathy. The 2 patients treated since age 4 and 16 months had normal cognitive and behavioral development at age 10 and 11 years. Late treated patients had limited improvement of cognitive functions. Conclusion AGAT deficiency is a treatable intellectual disability. Early diagnosis may prevent IDD and myopathy. Patients with unexplained IDD with and without myopathy should be assessed for AGAT deficiency by determination of urine/plasma GAA and cerebral creatine levels (via brain MRS), and by GATM gene sequencing

    Morquio-like dysostosis multiplex presenting with neuronopathic features is a distinct GLB1-related phenotype

    Get PDF
    Background Morquio B disease (MBD) is a distinct GLB1-related dysostosis multiplex presenting a mild phenocopy of GALNS-related Morquio A disease. Previously reported cases from European countries carry the W273L variant on at least one GLB1 allele and exhibit a pure skeletal phenotype (pure MBD). Only a minority of MBD cases have been described with additional neuronopathic findings (MBD plus). Objectives and Methods With the aim to further describe patterns of MBD-related dysostosis multiplex, we analyzed clinical, biochemical, and genetic features in 17 cases with GLB1-related dysostosis multiplex living and diagnosed in Brazil. Results About 14 of the 17 individuals had three or more skeletal findings characteristic of Morquio syndrome. Two had no additional neuronopathic features (pure MBD) and 12 exhibited additional neuronopathic features (MBD plus). Three of the 17 cases had mild dysostosis without distinct features of MBD. Seven of the 12 MBD plus patients had signs of spinal cord compression (SCC), as a result of progressive spinal vertebral dysostosis. There was an age-dependent increase in the number of skeletal findings and in the severity of growth impairment. GLB1 mutation analysis was completed in 10 of the 14 MBD patients. T500A occurred in compound heterozygosity in 8 of the 19 alleles. Conclusion Our study extends the phenotypic spectrum of GLB1-related conditions by describing a cohort of patients with MBD and GM1-gangliosidosis (MBD plus). Targeting the progressive nature of the skeletal manifestations in the development of new therapies for GLB1-related conditions is warranted

    Consensus guidelines for the diagnosis and management of pyridoxine-dependent epilepsy due to alpha-aminoadipic semialdehyde dehydrogenase deficiency

    Get PDF
    Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is an autosomal recessive condition due to a deficiency of α-aminoadipic semialdehyde dehydrogenase, which is a key enzyme in lysine oxidation. PDE-ALDH7A1 is a developmental and epileptic encephalopathy that was historically and empirically treated with pharmacologic doses of pyridoxine. Despite adequate seizure control, most patients with PDE-ALDH7A1 were reported to have developmental delay and intellectual disability. To improve outcome, a lysine-restricted diet and competitive inhibition of lysine transport through the use of pharmacologic doses of arginine have been recommended as an adjunct therapy. These lysine-reduction therapies have resulted in improved biochemical parameters and cognitive development in many but not all patients. The goal of these consensus guidelines is to re-evaluate and update the two previously published recommendations for diagnosis, treatment, and follow-up of patients with PDE-ALDH7A1. Members of the International PDE Consortium initiated evidence and consensus-based process to review previous recommendations, new research findings, and relevant clinical aspects of PDE-ALDH7A1. The guideline development group included pediatric neurologists, biochemical geneticists, clinical geneticists, laboratory scientists, and metabolic dieticians representing 29 institutions from 16 countries. Consensus guidelines for the diagnosis and management of patients with PDE-ALDH7A1 are provided. This article is protected by copyright. All rights reserved

    Exome Sequencing and the Management of Neurometabolic Disorders

    Get PDF
    BACKGROUND: Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level. METHODS: To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patient's clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes. RESULTS: We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%). CONCLUSIONS: Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Children's Hospital Foundation and others.)

    Morquio B Disease. Disease Characteristics and Treatment Options of a Distinct GLB1-Related Dysostosis Multiplex

    No full text
    Morquio B disease (MBD) is an autosomal recessive GLB1-gene-related lysosomal storage disease, presenting with a peculiar type of dysostosis multiplex which is also observed in GALNS-related Morquio A disease. MBD may present as pure skeletal phenotype (pure MBD) or in combination with the neuronopathic manifestations seen in type 2 (juvenile) or type 3 (late onset) GM1 gangliosidosis (MBD plus). The main skeletal features are progressive growth impairment, kyphoscoliosis, coxa/genua valga, joint laxity, platyspondyly and odontoid hypoplasia. The main neuronopathic features are dystonia, ataxia, and intellectual/developmental/speech delay. Spinal cord compression occurs as a complication of spinal dysostosis. Chronic pain is reported, along with mobility issues and challenges with daily living and self-care activities, as the most common health concern. The most commonly reported orthopedic surgeries are hip and knee replacements. Keratan sulphate-derived oligosaccharides are characteristic biomarkers. Residual β-galactosidase activities measured against synthetic substrates do not correlate with the phenotype. W273 L and T500A are the most frequently observed GLB1 variants in MBD, W273L being invariably associated with pure MBD. Cytokines play a role in joint destruction and pain, providing a promising treatment target. In the future, patients may benefit from small molecule therapies, and gene and enzyme replacement therapies, which are currently being developed for GM1 gangliosidosis.Other UBCNon UBCReviewedFacult

    Morquio B patient/caregiver survey: First insight into the natural course of a rare GLB1 related condition

    No full text
    Morquio B disease (MBD) or Mucopolysaccharidosis type IV B (MPS IV B) is caused by particular GLB1 mutations specifically affecting the affinity of beta-galactosidase to keratan sulphate, resulting in dysostosis multiplex resembling Morquio A (MPS IV A) disease (GALNS deficiency). Additional neuronopathic features of GM1 II/III (juvenile/adult) gangliosidosis have been reported in some patients. Our patient/caregiver online survey was aimed at elucidating the clinical manifestations of this ultra-rare condition.Comparing to previously published data on MPS IV A, the 30 respondents in our MBD group presented with greater growth chart values (weight and height) and with lesser effects of odontoid hypoplasia. The most common concerns are: (1) mobility issues - 84% having difficulty walking; (2) chronic pain - 96%; (3) surgeries - average 3 per person, 80% for hip problems; (4) hip dysplasia, knee/ankle concerns, and scoliosis. Approximately 50% of MBD participants live independently and actively contributing to society.Evidence from our survey results supports the notion that skeletal manifestations in MBD are milder than in the majority of patients with MPS IV A. The data collected will help with the establishment of clinically meaningful outcomes for future therapeutic trials, and with the counseling of newly diagnosed patients about their health expectations. Keywords: Skeletal dysplasia, GM1 gangliosidosis, Lysosome, Natural histor
    corecore