9 research outputs found

    Ciguatoxins activate the Calcineurin signalling pathway in Yeasts: Potential for development of an alternative detection tool?

    No full text
    International audienceCiguatoxins (CTXs) are lipid-soluble polyether compounds produced by dinoflagellates from the genus Gambierdiscus spp. typically found in tropical and subtropical zones. This endemic area is however rapidly expanding due to environmental perturbations, and both toxic Gambierdiscus spp. and ciguatoxic fishes have been recently identified in the North Atlantic Ocean (Madeira and Canary islands) and Mediterranean Sea. Ciguatoxins bind to Voltage Gated Sodium Channels on the membranes of sensory neurons, causing Ciguatera Fish Poisoning (CFP) in humans, a disease characterized by a complex array of gastrointestinal, neurological, neuropsychological, and cardiovascular symptoms. Although CFP is the most frequently reported non bacterial food-borne poisoning worldwide, there is still no simple and quick way of detecting CTXs in contaminated samples. In the prospect to engineer rapid and easy-to-use CTXs live cells-based tests, we have studied the effects of CTXs on the yeast Saccharomyces cerevisiae, a unicellular model which displays a remarkable conservation of cellular signalling pathways with higher eukaryotes. Taking advantage of this high level of conservation, yeast strains have been genetically modified to encode specific transcriptional reporters responding to CTXs exposure. These yeast strains were further exposed to different concentrations of either purified CTX or micro-algal extracts containing CTXs. Our data establish that CTXs are not cytotoxic to yeast cells even at concentrations as high as 1ÎŒM, and cause an increase in the level of free intracellular calcium in yeast cells. Concomitantly, a dose-dependent activation of the calcineurin signalling pathway is observed, as assessed by measuring the activity of specific transcriptional reporters in the engineered yeast strains. These findings offer promising prospects regarding the potential development of a yeast cells-based test that could supplement or, in some instances, replace current methods for the routine detection of CTXs in seafood products

    Development of new biosensors to detect ciguatoxins

    No full text
    Le poster a été présenté à l'oralInternational audienceCiguatoxins are lipid-soluble polyether compounds produced by dinoflagellates from the genus Gambierdiscus spp.. Ciguatoxins are mostly found in tropical and subtropical zones; however, within the last decade, they have been identified in fishes caught in European waters, notably in Madeira (1) and Canary Islands (2), while Gambierdiscus spp. have also been found both in the NE Atlantic Ocean (3) and in the Mediterranean Sea (4). These toxins bind to Voltage Gated Sodium Channels at the surface of human sensory neurons where they remain, causing Ciguatera Fish Poisoning with a variety of gastrointestinal, cardiovascular and neurological symptoms (paresthesia, ataxia, cold allodynia), including persistent neurological effects. Ciguatera is the major cause of food poisonings by seafood worldwide, with an estimated 50 000 to 500 000 victims per year. However, there is so far no simple and quick way of detecting these toxins in contaminated samples. Currently, only heavy and expensive laboratory methods are available to detect them: LC-MS/MS, receptor-binding assays by competition with radiolabeled compounds, and neuroblastoma cell-based assays performed on mammalian neurons (5). We have started to engineer biosensors based on the detection of a transcriptional signal in the yeast model Saccharomyces cerevisiae. This unicellular eukaryotic model is well-known and easy to genetically modify, grows fast and presents a very good conservation of signaling pathways with higher eukaryotes. We present a series of genetically modified yeast strains which allow us to follow the activation of specific signaling pathways responding linearly to ciguatoxin exposure

    Collaborative study for the detection of toxic compounds in shellfish extracts using cell-based assays. Part II: application to shellfish extracts spiked with lipophilic marine toxins.

    No full text
    Successive unexplained shellfish toxicity events have been observed in Arcachon Bay (Atlantic coast, France) since 2005. The positive mouse bioassay (MBA) revealing atypical toxicity did not match the phytoplankton observations or the liquid chromatography-tandem mass spectrometry (LC-MS/MS) investigations used to detect some known lipophilic toxins in shellfish. The use of the three cell lines (Caco2, HepG2, and Neuro2a) allows detection of azaspiracid-1 (AZA1), okadaic acid (OA), or pectenotoxin-2 (PTX2). In this study, we proposed the cell-based assays (CBA) as complementary tools for collecting toxicity data about atypical positive MBA shellfish extracts and tracking their chromatographic fractionation in order to identify toxic compound(s). The present study was intended to investigate the responses of these cell lines to shellfish extracts, which were either control or spiked with AZA1, OA, or PTX2 used as positive controls. Digestive glands of control shellfish were extracted using the procedure of the standard MBA for lipophilic toxins and then tested for their cytotoxic effects in CBA. The same screening strategy previously used with pure lipophilic toxins was conducted for determining the intra- and inter-laboratory variabilities of the responses. Cytotoxicity was induced by control shellfish extracts whatever the cell line used and regardless of the geographical origin of the extracts. Even though the control shellfish extracts demonstrated some toxic effects on the selected cell lines, the extracts spiked with the selected lipophilic toxins were significantly more toxic than the control ones. This study is a crucial step for supporting that cell-based assays can contribute to the detection of the toxic compound(s) responsible for the atypical toxicity observed in Arcachon Bay, and which could also occur at other coastal areas

    Collaborative study for the detection of toxic compounds in shellfish extracts using cell-based assays. Part I: screening strategy and pre-validation study with lipophilic marine toxins.

    No full text
    Human poisoning due to consumption of seafood contaminated with phycotoxins is a worldwide problem, and routine monitoring programs have been implemented in various countries to protect human consumers. Following successive episodes of unexplained shellfish toxicity since 2005 in the Arcachon Bay on the French Atlantic coast, a national research program was set up to investigate these atypical toxic events. Part of this program was devoted to fit-for-purpose cell-based assays (CBA) as complementary tools to collect toxicity data on atypical positive-mouse bioassay shellfish extracts. A collaborative study involving five laboratories was conducted. The responses of human hepatic (HepG2), human intestinal (Caco2), and mouse neuronal (Neuro2a) cell lines exposed to three known lipophilic phycotoxins-okadaic acid (OA), azaspiracid-1 (AZA1), and pectenotoxin-2 (PTX2)-were investigated. A screening strategy composed of standard operating procedures and a decision tree for dose-response modeling and assay validation were designed after a round of "trial-and-error" process. For each toxin, the shape of the concentration-response curves and the IC(50) values were determined on the three cell lines. Whereas OA induced a similar response irrespective of the cell line (complete sigmoid), PTX2 was shown to be less toxic. AZA1 induced cytotoxicity only on HepG2 and Neuro2a, but not on Caco2. Intra- and inter-laboratory coefficients of variation of cell responses were large, with mean values ranging from 35 to 54 % and from 37 to 48 %, respectively. Investigating the responses of the selected cell lines to well-known toxins is the first step supporting the use of CBA among the panel of methods for characterizing atypical shellfish toxicity. Considering these successful results, the CBA strategy will be further applied to extracts of negative, spiked, and naturally contaminated shellfish tissues

    Collaborative study for the detection of toxic compounds in shellfish extracts using cell-based assays. Part II: application to shellfish extracts spiked with lipophilic marine toxins

    No full text
    Successive unexplained shellfish toxicity events have been observed in Arcachon Bay (Atlantic coast, France) since 2005. The positive mouse bioassay (MBA) revealing atypical toxicity did not match the phytoplankton observations or the liquid chromatography-tandem mass spectrometry (LC-MS/MS) investigations used to detect some known lipophilic toxins in shellfish. The use of the three cell lines (Caco2, HepG2, and Neuro2a) allows detection of azaspiracid-1 (AZA1), okadaic acid (OA), or pectenotoxin-2 (PTX2). In this study, we proposed the cell-based assays (CBA) as complementary tools for collecting toxicity data about atypical positive MBA shellfish extracts and tracking their chromatographic fractionation in order to identify toxic compound(s). The present study was intended to investigate the responses of these cell lines to shellfish extracts, which were either control or spiked with AZA1, OA, or PTX2 used as positive controls. Digestive glands of control shellfish were extracted using the procedure of the standard MBA for lipophilic toxins and then tested for their cytotoxic effects in CBA. The same screening strategy previously used with pure lipophilic toxins was conducted for determining the intra- and inter-laboratory variabilities of the responses. Cytotoxicity was induced by control shellfish extracts whatever the cell line used and regardless of the geographical origin of the extracts. Even though the control shellfish extracts demonstrated some toxic effects on the selected cell lines, the extracts spiked with the selected lipophilic toxins were significantly more toxic than the control ones. This study is a crucial step for supporting that cell-based assays can contribute to the detection of the toxic compound(s) responsible for the atypical toxicity observed in Arcachon Bay, and which could also occur at other coastal areas

    Collaborative study for the detection of toxic compounds in shellfish extracts using cell-based assays. Part I: screening strategy and pre-validation study with lipophilic marine toxins

    No full text
    Human poisoning due to consumption of seafood contaminated with phycotoxins is a worldwide problem, and routine monitoring programs have been implemented in various countries to protect human consumers. Following successive episodes of unexplained shellfish toxicity since 2005 in the Arcachon Bay on the French Atlantic coast, a national research program was set up to investigate these atypical toxic events. Part of this program was devoted to fit-for-purpose cell-based assays (CBA) as complementary tools to collect toxicity data on atypical positive-mouse bioassay shellfish extracts. A collaborative study involving five laboratories was conducted. The responses of human hepatic (HepG2), human intestinal (Caco2), and mouse neuronal (Neuro2a) cell lines exposed to three known lipophilic phycotoxins-okadaic acid (OA), azaspiracid-1 (AZA1), and pectenotoxin-2 (PTX2)-were investigated. A screening strategy composed of standard operating procedures and a decision tree for dose-response modeling and assay validation were designed after a round of "trial-and-error" process. For each toxin, the shape of the concentration-response curves and the IC(50) values were determined on the three cell lines. Whereas OA induced a similar response irrespective of the cell line (complete sigmoid), PTX2 was shown to be less toxic. AZA1 induced cytotoxicity only on HepG2 and Neuro2a, but not on Caco2. Intra- and inter-laboratory coefficients of variation of cell responses were large, with mean values ranging from 35 to 54 % and from 37 to 48 %, respectively. Investigating the responses of the selected cell lines to well-known toxins is the first step supporting the use of CBA among the panel of methods for characterizing atypical shellfish toxicity. Considering these successful results, the CBA strategy will be further applied to extracts of negative, spiked, and naturally contaminated shellfish tissues

    The HEV Ventilator: at the interface between particle physics and biomedical engineering.

    Get PDF
    A high-quality, low-cost ventilator, dubbed HEV, has been developed by the particle physics community working together with biomedical engineers and physicians around the world. The HEV design is suitable for use both in and out of hospital intensive care units, provides a variety of modes and is capable of supporting spontaneous breathing and supplying oxygen-enriched air. An external air supply can be combined with the unit for use in situations where compressed air is not readily available. HEV supports remote training and post market surveillance via a Web interface and data logging to complement standard touch screen operation, making it suitable for a wide range of geographical deployment. The HEV design places emphasis on the ventilation performance, especially the quality and accuracy of the pressure curves, reactivity of the trigger, measurement of delivered volume and control of oxygen mixing, delivering a global performance which will be applicable to ventilator needs beyond the COVID-19 pandemic. This article describes the conceptual design and presents the prototype units together with a performance evaluation
    corecore