132 research outputs found

    Probing Anti-inflammatory Properties Independent of NF-κB Through Conformational Constraint of Peptide-Based Interleukin-1 Receptor Biased Ligands

    Get PDF
    Interleukin-1β (IL-1β) binds to the IL-1 receptor (IL-1R) and is a key cytokine mediator of inflammasome activation. IL-1β signaling leads to parturition in preterm birth (PTB) and contributes to the retinal vaso-obliteration characteristic of oxygen-induced retinopathy (OIR) of premature infants. Therapeutics targeting IL-1β and IL-1R are approved to treat rheumatoid arthritis; however, all are large proteins with clinical limitations including immunosuppression, due in part to inhibition of NF-κB signaling, which is required for immuno-vigilance and cytoprotection. The all-D-amino acid peptide 1 (101.10, H-d-Arg-d-Tyr-d-Thr-d-Val-d-Glu-d-Leu-d-Ala-NH2) is an allosteric IL-1R modulator, which exhibits functional selectivity and conserves NF-κB signaling while inhibiting other IL-1-activated pathways. Peptide 1 has proven effective in experimental models of PTB and OIR. Seeking understanding of the structural requirements for the activity and biased signaling of 1, a panel of twelve derivatives was synthesized employing the various stereochemical isomers of α-amino-γ-lactam (Agl) and α-amino-β-hydroxy-γ-lactam (Hgl) residues to constrain the D-Thr-D-Val dipeptide residue. Using circular dichroism spectroscopy, the peptide conformation in solution was observed to be contingent on Agl, Hgl, and Val stereochemistry. Moreover, the lactam mimic structure and configuration influenced biased IL-1 signaling in an in vitro panel of cellular assays as well as in vivo activity in murine models of PTB and OIR. Remarkably, all Agl and Hgl analogs of peptide 1 did not inhibit NF-κB signaling but blocked other pathways, such as JNK and ROCK2 phosphorylation contingent on structure and configuration. Efficacy in preventing preterm labor correlated with a capacity to block IL-1β-induced IL-1β synthesis. Furthermore, the importance of inhibition of JNK and ROCK2 phosphorylation for enhanced activity was highlighted for prevention of vaso-obliteration in the OIR model. Taken together, lactam mimic structure and stereochemistry strongly influenced conformation and biased signaling. Selective modulation of IL-1 signaling was proven to be particularly beneficial for curbing inflammation in models of preterm labor and retinopathy of prematurity (ROP). A class of biased ligands has been created with potential to serve as selective probes for studying IL-1 signaling in disease. Moreover, the small peptide mimic prototypes are promising leads for developing immunomodulatory therapies with easier administration and maintenance of beneficial effects of NF-κB signaling

    Preventing corneal calcification associated with xylazine for longitudinal optical coherence tomography in young rodents

    Get PDF
    PURPOSE. Spectral-domain optical coherence tomography (SD-OCT) is widely used in clinical ophthalmology and recently gained popularity in laboratory research involving small rodents. Its noninvasive nature allows repeated measurements, thereby decreasing the number of animals required. However, when used at a conventional dosage, xylazine (an a2- adrenoceptor) can cause irreversible corneal calcification, especially among young rodents. In the present study, we test whether corneal calcification associated with xylazine is mediated by the a2-adrenoceptor. METHODS. Our study tested Sprague-Dawley rats, Long-Evans rats, and CD-1 mice (postnatal day [P]14). Retinal images were captured by SD-OCT. Quantitative PCR (qPCR) was used to study gene expression, whereas receptor localization was examined by immunofluorescent staining followed by confocal microscopy. Calcium deposits were detected via von Kossa staining. RESULTS. When used at dosages appropriate for adult animals, ketamine-xylazine anesthetics led to a high rate of respiratory failure, increased apoptotic activity in the corneal epithelium, and irreversible corneal calcification in P14 rat pups. Meanwhile, OCT image quality decreased drastically as a result of corneal calcification among animals recovering from anesthesia. a2-Adrenoceptor subtypes were highly expressed on P14, in line with rodents’ age-specific sensitivity to xylazine. Clonidine, a potent a2-adrenoceptor agonist, dosedependently induced corneal calcification, which could be prevented by an a2-adrenoceptor antagonist. CONCLUSIONS. These data suggest that a2-adrenoceptors contribute to corneal calcification in young rodents. Therefore, we developed a suitable OCT imaging protocol for this cohort, including a carefully tailored ketamine-xylazine dosage (60 mg/kg and 2.5 kg/mg, respectively)

    IL23R (Interleukin 23 Receptor) variants protective against inflammatory bowel diseases (IBD) display loss of functiondue to impaired protein stability and intracellular trafficking

    Get PDF
    Genome-wide association studies as well as murine models have shown that the interleukin 23 receptor (IL23R) pathway plays a pivotal role in chronic inflammatory diseases such as Crohn disease (CD), ulcerative colitis, psoriasis, and type 1 diabetes. Genome-wide association studies and targeted re-sequencing studies have revealed the presence of multiple potentially causal variants of the IL23R. Specifically the G149R, V362I, and R381Q IL23R chain variants are linked to protection against the development of Crohn disease and ulcerative colitis in humans. Moreover, the exact mechanism of action of these receptor variants has not been elucidated. We show that all three of these IL23R variants cause a reduction in IL23 receptor activation-mediated phosphorylation of the signaltransducing activator of transcription 3 (STAT3) and phosphorylation of signal transducing activator of transcription 4 (STAT4). The reduction in signaling is due to lower levels of cell surface receptor expression. For G149R, the receptor retention in the endoplasmic reticulum is due to an impairment of receptor maturation, whereas the R381Q and V362I variants have reduced protein stability. Finally, we demonstrate that the endogenous expression of IL23R protein from V362I and R381Q variants in human lymphoblastoid cell lines exhibited lower expression levels relative to susceptibility alleles. Our results suggest a convergent cause of IL23R variant protection against chronic inflammatory disease

    CD36 plays an important role in the clearance of oxLDL and associated age-dependent sub-retinal deposits

    Get PDF
    Age-related macular degeneration (AMD) represents the major cause of vision loss in industrialized nations. Laminar deposits in Bruch's membrane (BM) are among the first prominent histopathologic features, along with drusen formation, and have been found to contain oxidized lipids. Increases in concentrations of oxidized LDL (oxLDL) in plasma are observed with age and high fat high (HFHC) cholesterol diet. CD36 is the principal receptor implicated in uptake of oxLDL, and is expressed in the retinal pigment epithelium (RPE). We determined if CD36 participates in oxLDL uptake in RPE and correspondingly in clearance of sub-retinal deposits. Uptake of oxLDL by RPE in vitro and in vivo was CD36-dependent. CD36 deficiency in mice resulted in age-associated accumulation of oxLDL and sub-retinal BM thickening, despite fed a regular diet. Conversely, treatment of HFHC-fed ApoE null mice with a CD36 agonist, EP80317 (300 μg/kg/day), markedly diminished thickening of BM, and partially preserved (in part) photoreceptor function. In conclusion, our data uncover a new role for CD36 in the clearance of oxidized lipids from BM and in the prevention of age-dependent sub-retinal laminar deposits

    Assessing therapeutic response non-invasively in a neonatal rat model of acute inflammatory white matter injury using high-field MRI

    Get PDF
    Perinatal infection and inflammatory episodes in preterm infants are associated with diffuse white matter injury (WMI) and adverse neurological outcomes. Inflammation-induced WMI was previously shown to be linked with later hippocampal atrophy as well as learning and memory impairments in preterm infants. Early evaluation of injury load and therapeutic response with non-invasive tools such as multimodal magnetic resonance imaging (MRI) would greatly improve the search of new therapeutic approaches in preterm infants. Our aim was to evaluate the potential of multimodal MRI to detect the response of interleukin-1 receptor antagonist (IL-1Ra) treatment, known for its neuroprotective properties, during the acute phase of injury on a model of neonatal WMI. Rat pups at postnatal day 3 (P3) received intracerebral injection of lipopolysaccharide with systemic IL-1Ra therapy. 24h later (P4), rats were imaged with multimodal MRI to assess microstructure by diffusion tensor imaging (DTI) and neurochemical profile of the hippocampus with (1)H-magnetic resonance spectroscopy. Astrocyte and microglial activation, apoptosis and the mRNA expression of pro-inflammatory and necroptotic markers were assessed. During the acute phase of injury, neonatal LPS exposure altered the concentration of hippocampus metabolites related to neuronal integrity, neurotransmission and membrane integrity and induced diffusivity restriction. Just 24h after initiation of therapy, early indication of IL-1Ra neuroprotective effect could be detected in vivo by non-invasive spectroscopy and DTI, and confirmed with immunohistochemical evaluation and mRNA expression of inflammatory markers and cell death. In conclusion, multimodal MRI, particularly DTI, can detect not only injury but also the acute therapeutic effect of IL-1Ra suggesting that MRI could be a useful non-invasive tool to follow, at early time points, the therapeutic response in preterm infants

    Targeting intracellular B2 receptors using novel cell-penetrating antagonists to arrest growth and induce apoptosis in human triple-negative breast cancer

    Get PDF
    G protein-coupled receptors (GPCRs) are integral cell-surface proteins having a central role in tumor growth and metastasis. However, several GPCRs retain an atypical intracellular/nuclear location in various types of cancer. The pathological significance of this is currently unknown. Here we extend this observation by showing that the bradykinin B2R (BK-B2R) is nuclearly expressed in the human triple-negative breast cancer (TNBC) cell line MDA-MB-231 and in human clinical specimens of TNBC. We posited that these "nuclearized" receptors could be involved in oncogenic signaling linked to aberrant growth and survival maintenance of TNBC. We used cell-penetrating BK-B2R antagonists, including FR173657 and novel transducible, cell-permeable forms of the peptide B2R antagonist HOE 140 (NG68, NG134) to demonstrate their superior efficacy over impermeable ones (HOE 140), in blocking proliferation and promoting apoptosis of MDA-MB-231 cells. Some showed an even greater antineoplastic activity over conventional chemotherapeutic drugs in vitro. The cell-permeable B2R antagonists had less to no anticancer effects on B2R shRNA-knockdown or non-B2R expressing (COS-1) cells, indicating specificity in their action. Possible mechanisms of their anticancer effects may involve activation of p38kinase/p27Kip1pathways. Together, our data support the existence of a possible intracrine signaling pathway via internal/nuclear B2R, critical for the growth of TNBC cells, and identify new chemical entities that enable to target the corresponding intracellular GPCRs

    The Dichotomous Pattern of IL-12R and IL-23R Expression Elucidates the Role of IL-12 and IL-23 in Inflammation

    Get PDF
    IL-12 and IL-23 cytokines respectively drive Th1 and Th17 type responses. Yet, little is known regarding the biology of these receptors. As the IL-12 and IL-23 receptors share a common subunit, it has been assumed that these receptors are co-expressed. Surprisingly, we find that the expression of each of these receptors is restricted to specific cell types, in both mouse and human. Indeed, although IL-12Rβ2 is expressed by NK cells and a subset of γδ T cells, the expression of IL-23R is restricted to specific T cell subsets, a small number of B cells and innate lymphoid cells. By exploiting an IL-12- and IL-23-dependent mouse model of innate inflammation, we demonstrate an intricate interplay between IL-12Rβ2 NK cells and IL-23R innate lymphoid cells with respectively dominant roles in the regulation of systemic versus local inflammatory responses. Together, these findings support an unforeseen lineage-specific dichotomy in the in vivo role of both the IL-12 and IL-23 pathways in pathological inflammatory states, which may allow more accurate dissection of the roles of these receptors in chronic inflammatory diseases in humans

    The role of prostaglandins in autoregulation of cerebral blood flow of the newborn /

    No full text
    The role of prostanoids in autoregulation of cerebral blood flow (CBF) of the newborn is unclear. We hypothesized that prostanoids not only exhibit cerebral vasoactive properties, but also play an important role in setting the limits of autoregulation of CBF in the newborn.Consequently, in the newborn piglet, we determined the effects of prostaglandins (PGs), PGEsb1 sb1, PGEsb2 sb2, PGFsb2alpha sb{2 alpha} and PGIsb2 sb2, on CBF, and compared their vasoactive action on isolated internal carotid and basilar arteries of newborns and adults. Cerebrovascular prostanoid concentrations were also measured as a function of systemic blood pressure (BP), in animals subjected or not to prostanoid synthesis inhibition, using ibuprofen. Finally, we examined in the preterm infant the effects of indomethacin on CBF velocity (CBFV) during clinical procedures (endotracheal suctioning) known to increase BP and CBFV concomitantly.All major cerebrovascular PGs (physiologically relevant doses) increased CBF, and contracted minimally isolated arteries. These effects were most evident for PGFsb2alpha sb{2 alpha}, the most effective adult vasoconstrictor PG.During hypotension, sagittal sinus concentrations of thromboxane exhibited the highest increase of all prostanoids. However, during hypertension, PGE, PGFsb2alpha sb{2 alpha}, and 6-keto-PGFsb1alpha sb{1 alpha} increased, without changes in TXBsb2 sb2. Ibuprofen, inhibited the changes in prostanoids that occurred as a function of BP, and widened CBF autoregulation from 50-90 mm Hg to 35-117 mm Hg of BP. Therefore, the potent vasoconstrictor, thromboxane, contributed to set the lower limit of the CBF autoregulatory range to 50 mm Hg of BP; and PGs (which increase newborn CBF) contributed to the pressure-passivity of CBF above 90 mm Hg.In the preterm newborn infant, indomethacin attenuated the increases in CBFV that occur with endotracheal suctioning; thus, in accord with studies on animals subjected to changes in BP.In conclusion, PGs possess minimal cerebral vasocontractile activity in the newborn. The findings confirm our hypothesis that prostanoids contribute significantly in establishing the range of CBF autoregulation of the newborn, which is principally narrowed at its upper limit compared to that of the adult. Thus, the difference in the CBF autoregulatory range of the newborn and adult animal appears to result mainly from age-related differences in the effects of PGs on cerebral hemodynamics. Finally, ibuprofen may provide therapeutic modes to prevent hemorrhagic and ischemic encephalopathies of the newborn
    corecore