230 research outputs found

    Seasonal ability of biofilm formation of Listeria monocytogenes strains isolated from slaughterhouses in Quebec

    Get PDF
    Listeria monocytogenes is a pathogenic bacterium found in the environment and food. It causes Listeriosis, a serious disease that presents largest fatality rate among foodborne illness. The persistence of these bacteria in food processing plants, favoured by biofilm formation is a major problem both for industry and public health. The aim of the study was to compare strains isolated from three sectors in slaughterhouses for their ability to form biofilms. The strains were isolated from holding pens, slaughtering, and cutting in 4 slaughterhouses and for 3 different periods of the year. Biofilm formation analyses were performed for 186 strains under static conditions at 30 °C for 48 hours and 7 °C for 15 days, frequent temperature in meat processing plants. Biomass production in BHI is measured in microplates after staining with crystal violet and measuring the absorbance at 595 nm, the data is normalized to obtain inter strain comparability in 96 well plate. Results show significant difference in biofilm formation between strains according to the period of sampling and origin of strains (slaughterhouse). Biofilm formation by strains belonging to the sampling of period 2 (February to May 2014) were greater than in summer 2015 at 30 °C (p\u3c0,0001) and at 7°C (p=0,019). Strains isolated from plants 1 and 2 produced more biomass than those collected from plant 4 at 30°C (p=0,0015) and 7°C, biofilm formation in isolates from plants 1and 2 were greater than in strains from plants 3 and 4 (p\u3c0,0001). No difference in biofilm formation ability was revealed depending on the place sampled in the plant (holding pens, slaughter or cutting rooms), whatever the temperature tested. Among strains studied here, strong differences in biofilm forming ability were identified; these results are the beginning of our in vestigation aiming to answer the question of strain persistence

    Epigenetic effects of metformin: From molecular mechanisms to clinical implications

    Get PDF
    There is a growing body of evidence that links epigenetic modifications to type 2 diabetes. Researchers have more recently investigated effects of commonly used medications, including those prescribed for diabetes, on epigenetic processes. This work reviews the influence of the widely used antidiabetic drug metformin on epigenomics, microRNA levels and subsequent gene expression, and potential clinical implications. Metformin may influence the activity of numerous epigenetic modifying enzymes, mostly by modulating the activation of AMP-activated protein kinase (AMPK). Activated AMPK can phosphorylate numerous substrates, including epigenetic enzymes such as histone acetyltransferases (HATs), class II histone deacetylases (HDACs) and DNA methyltransferases (DNMTs), usually resulting in their inhibition; however, HAT1 activity may be increased. Metformin has also been reported to decrease expression of multiple histone methyltransferases, to increase the activity of the class III HDAC SIRT1 and to decrease the influence of DNMT inhibitors. There is evidence that these alterations influence the epigenome and gene expression, and may contribute to the antidiabetic properties of metformin and, potentially, may protect against cancer, cardiovascular disease, cognitive decline and aging. The expression levels of numerous microRNAs are also reportedly influenced by metformin treatment and may confer antidiabetic and anticancer activities. However, as the reported effects of metformin on epigenetic enzymes act to both increase and decrease histone acetylation, histone and DNA methylation, and gene expression, a significant degree of uncertainty exists concerning the overall effect of metformin on the epigenome, on gene expression, and on the subsequent effect on the health of metformin users

    X-ray metal line emission from the hot circumgalactic medium: probing the effects of supermassive black hole feedback

    Full text link
    We derive predictions from state-of-the-art cosmological galaxy simulations for the spatial distribution of the hot circumgalactic medium (CGM, [0.11]R200c{\rm [0.1-1]R_{200c}}) through its emission lines in the X-ray soft band ([0.31.3][0.3-1.3] keV). In particular, we compare IllustrisTNG, EAGLE, and SIMBA and focus on galaxies with stellar mass 10^{10-11.6}\, \MSUN at z=0z=0. The three simulation models return significantly different surface brightness radial profiles of prominent emission lines from ionized metals such as OVII(f), OVIII, and FeXVII as a function of galaxy mass. Likewise, the three simulations predict varying azimuthal distributions of line emission with respect to the galactic stellar planes, with IllustrisTNG predicting the strongest angular modulation of CGM physical properties at radial range 0.30.5R200c{\gtrsim0.3-0.5\,R_{200c}}. This anisotropic signal is more prominent for higher-energy lines, where it can manifest as X-ray eROSITA-like bubbles. Despite different models of stellar and supermassive black hole (SMBH) feedback, the three simulations consistently predict a dichotomy between star-forming and quiescent galaxies at the Milky-Way and Andromeda mass range, where the former are X-ray brighter than the latter. This is a signature of SMBH-driven outflows, which are responsible for quenching star formation. Finally, we explore the prospect of testing these predictions with a microcalorimeter-based X-ray mission concept with a large field-of-view. Such a mission would probe the extended hot CGM via soft X-ray line emission, determine the physical properties of the CGM, including temperature, from the measurement of line ratios, and provide critical constraints on the efficiency and impact of SMBH feedback on the CGM.Comment: 21 pages, 15 figures. Submitted to MNRAS and received a positive referee repor

    Numerical Calculations of the B1g Raman Spectrum of the Two-Dimensional Heisenberg Model

    Full text link
    The B1g Raman spectrum of the two-dimensional S=1/2 Heisenberg model is discussed within Loudon-Fleury theory at both zero and finite temperature. The exact T=0 spectrum for lattices with up to 6*6 sites is computed using Lanczos exact diagonalization. A quantum Monte Carlo (QMC) method is used to calculate the corresponding imaginary-time correlation function and its first two derivatives for lattices with up to 16*16 spins. The imaginary-time data is continued to real frequency using the maximum-entropy method, as well as a fit based on spinwave theory. The numerical results are compared with spinwave calculations for finite lattices. There is a surprisingly large change in the exact spectrum going from 4*4 to 6*6 sites. In the former case there is a single dominant two-magnon peak at frequency w/J appr. 3.0, whereas in the latter case there are two approximately equal-sized peaks at w/J appr. 2.7 and 3.9. This is in good qualitative agreement with the spinwave calculations including two-magnon processes on the same lattices. Both the Lanczos and the QMC results indicate that the actual infinite-size two-magnon profile is broader than the narrow peak obtained in spinwave theory, but the positions of the maxima agree to within a few percent. The higher-order contributions present in the numerical results are merged with the two-magnon profile and extend up to frequencies w/J appr. 7. The first three frequency cumulants of the spectrum are in excellent agreement with results previously obtained from a series expansion around the Ising limit. Typical experimental B1g$ spectra for La2CuO4 are only slightly broader than what we obtain here. The exchange constant extracted from the peak position is J appr. 1400K, in good agreement with values obtained from neutron scattering and NMR experiments.Comment: 15 pages, Revtex, 13 PostScript figure

    LEM All-Sky Survey: Soft X-ray Sky at Microcalorimeter Resolution

    Full text link
    The Line Emission Mapper (LEM) is an X-ray Probe with with spectral resolution ~2 eV FWHM from 0.2 to 2.5 keV and effective area >2,500 cm2^2 at 1 keV, covering a 33 arcmin diameter Field of View with 15 arcsec angular resolution, capable of performing efficient scanning observations of very large sky areas and enabling the first high spectral resolution survey of the full sky. The LEM-All-Sky Survey (LASS) is expected to follow the success of previous all sky surveys such as ROSAT and eROSITA, adding a third dimension provided by the high resolution microcalorimeter spectrometer, with each 15 arcsec pixel of the survey including a full 1-2 eV resolution energy spectrum that can be integrated over any area of the sky to provide statistical accuracy. Like its predecessors, LASS will provide both a long-lasting legacy and open the door to the unknown, enabling new discoveries and delivering the baseline for unique GO studies. No other current or planned mission has the combination of microcalorimeter energy resolution and large grasp to cover the whole sky while maintaining good angular resolution and imaging capabilities. LASS will be able to probe the physical conditions of the hot phases of the Milky Way at multiple scales, from emission in the Solar system due to Solar Wind Charge eXchange, to the interstellar and circumgalactic media, including the North Polar Spur and the Fermi/eROSITA bubbles. It will measure velocities of gas in the inner part of the Galaxy and extract the emissivity of the Local Hot Bubble. By maintaining the original angular resolution, LASS will also be able to study classes of point sources through stacking. For classes with ~10410^4 objects, it will provide the equivalent of 1 Ms of high spectral resolution data. We describe the technical specifications of LASS and highlight the main scientific objectives that will be addressed. (Abridged)Comment: White Paper in support of a mission concept to be submitted for the 2023 NASA Astrophysics Probes opportunity. This White Paper will be updated when required. 30 pages, 25 figure

    Turnover of BRCA1 Involves in Radiation-Induced Apoptosis

    Get PDF
    Background: Germ-line mutations of the breast cancer susceptibility gene-1 (BRCA1) increase the susceptibility to tumorigenesis. The function of BRCA1 is to regulate critical cellular processes, including cell cycle progression, genomic integrity, and apoptosis. Studies on the regulation of BRCA1 have focused intensely on transcription and phosphorylation mechanisms. Proteolytic regulation of BRCA1 in response to stress signaling remains largely unknown. The manuscript identified a novel mechanism by which BRCA1 is regulated by the ubiquitin-dependent degradation in response to ionization. Methodology/Principal Findings: Here, we report that severe ionization triggers rapid degradation of BRCA1, which in turn results in the activation of apoptosis. Ionization-induced BRCA1 turnover is mediated via an ubiquitin-proteasomal pathway. The stabilization of BRCA1 significantly delays the onset of ionization-induced apoptosis. We have mapped the essential region on BRCA1, which mediates its proteolysis in response to ionization. Moreover, we have demonstrated that BRCA1 protein is most sensitive to degradation when ionization occurs during G2/M and S phase. Conclusions/Significance: Our results suggest that ubiquitin-proteasome plays an important role in regulating BRCA1 during genotoxic stress. Proteolytic regulation of BRCA1 involves in ionization-induced apoptosis. © 2010 Liu et al

    Combining Free Text and Structured Electronic Medical Record Entries to Detect Acute Respiratory Infections

    Get PDF
    The electronic medical record (EMR) contains a rich source of information that could be harnessed for epidemic surveillance. We asked if structured EMR data could be coupled with computerized processing of free-text clinical entries to enhance detection of acute respiratory infections (ARI).A manual review of EMR records related to 15,377 outpatient visits uncovered 280 reference cases of ARI. We used logistic regression with backward elimination to determine which among candidate structured EMR parameters (diagnostic codes, vital signs and orders for tests, imaging and medications) contributed to the detection of those reference cases. We also developed a computerized free-text search to identify clinical notes documenting at least two non-negated ARI symptoms. We then used heuristics to build case-detection algorithms that best combined the retained structured EMR parameters with the results of the text analysis.An adjusted grouping of diagnostic codes identified reference ARI patients with a sensitivity of 79%, a specificity of 96% and a positive predictive value (PPV) of 32%. Of the 21 additional structured clinical parameters considered, two contributed significantly to ARI detection: new prescriptions for cough remedies and elevations in body temperature to at least 38°C. Together with the diagnostic codes, these parameters increased detection sensitivity to 87%, but specificity and PPV declined to 95% and 25%, respectively. Adding text analysis increased sensitivity to 99%, but PPV dropped further to 14%. Algorithms that required satisfying both a query of structured EMR parameters as well as text analysis disclosed PPVs of 52-68% and retained sensitivities of 69-73%.Structured EMR parameters and free-text analyses can be combined into algorithms that can detect ARI cases with new levels of sensitivity or precision. These results highlight potential paths by which repurposed EMR information could facilitate the discovery of epidemics before they cause mass casualties

    In vivo magnetic resonance spectroscopy: basic methodology and clinical applications

    Get PDF
    The clinical use of in vivo magnetic resonance spectroscopy (MRS) has been limited for a long time, mainly due to its low sensitivity. However, with the advent of clinical MR systems with higher magnetic field strengths such as 3 Tesla, the development of better coils, and the design of optimized radio-frequency pulses, sensitivity has been considerably improved. Therefore, in vivo MRS has become a technique that is routinely used more and more in the clinic. In this review, the basic methodology of in vivo MRS is described—mainly focused on 1H MRS of the brain—with attention to hardware requirements, patient safety, acquisition methods, data post-processing, and quantification. Furthermore, examples of clinical applications of in vivo brain MRS in two interesting fields are described. First, together with a description of the major resonances present in brain MR spectra, several examples are presented of deviations from the normal spectral pattern associated with inborn errors of metabolism. Second, through examples of MR spectra of brain tumors, it is shown that MRS can play an important role in oncology

    Rapid De Novo Evolution of X Chromosome Dosage Compensation in Silene latifolia, a Plant with Young Sex Chromosomes

    Get PDF
    Evidence for dosage compensation in Silene latifolia, a plant with 10-million-year-old sex chromosomes, reveals that dosage compensation can evolve rapidly in young XY systems and is not an animal-specific phenomenon

    The Cyst-Dividing Bacterium Ramlibacter tataouinensis TTB310 Genome Reveals a Well-Stocked Toolbox for Adaptation to a Desert Environment

    Get PDF
    Ramlibacter tataouinensis TTB310T (strain TTB310), a betaproteobacterium isolated from a semi-arid region of South Tunisia (Tataouine), is characterized by the presence of both spherical and rod-shaped cells in pure culture. Cell division of strain TTB310 occurs by the binary fission of spherical “cyst-like” cells (“cyst-cyst” division). The rod-shaped cells formed at the periphery of a colony (consisting mainly of cysts) are highly motile and colonize a new environment, where they form a new colony by reversion to cyst-like cells. This unique cell cycle of strain TTB310, with desiccation tolerant cyst-like cells capable of division and desiccation sensitive motile rods capable of dissemination, appears to be a novel adaptation for life in a hot and dry desert environment. In order to gain insights into strain TTB310's underlying genetic repertoire and possible mechanisms responsible for its unusual lifestyle, the genome of strain TTB310 was completely sequenced and subsequently annotated. The complete genome consists of a single circular chromosome of 4,070,194 bp with an average G+C content of 70.0%, the highest among the Betaproteobacteria sequenced to date, with total of 3,899 predicted coding sequences covering 92% of the genome. We found that strain TTB310 has developed a highly complex network of two-component systems, which may utilize responses to light and perhaps a rudimentary circadian hourglass to anticipate water availability at the dew time in the middle/end of the desert winter nights and thus direct the growth window to cyclic water availability times. Other interesting features of the strain TTB310 genome that appear to be important for desiccation tolerance, including intermediary metabolism compounds such as trehalose or polyhydroxyalkanoate, and signal transduction pathways, are presented and discussed
    corecore