11 research outputs found

    FABRICATION AND EVALUATION OF SMART NANOCRYSTALS OF ARTEMISININ FOR ANTIMALARIAL AND ANTIBACTERIAL EFFICACY

    Get PDF
    Background: Nanocrystals have the potential to substantially increase dissolution rate, solubility with subsequent enhanced bioavailability via the oral route of a range of poor water soluble drugs. Regardless of other issues, scale up of the batch size is the main issue associated with bottom up approach. Material and Methods: Smart nanocrystals of artemisinin (ARM) was produced relatively at large batch sizes (100, 200, 300 and 400ml) compared to our previously reported study by (Shah, et al., 2016). ARM nanosuspensions/nanocrystals were characterised using zeta sizer, SEM, TEM, DSC, PXRD and RP-HPLC. The nanosuspensions were finally subjected to in vitro antimalarial and antimicrobial activity. Results: The average particle size (PS) for 400 ml batches was 126.5 ±1.02 nm, and the polydispersity index (PI) was 0.194 ± 0.04. The saturation solubility of the ARM nanocrystals was substantially increased to (725.4± 2.0 μg/ml) compared to the raw ARM in water 177.4± 1.3 μg/ml and stabilizer solution (385.3± 2.0 μg/ml). The IC50 value of ARM nanosuspension against P. vivax was 65 and 21 folds lower than micronized 19.5 ng/mL and unprocessed drug (6.4 ng/mL) respectively. The ARM nanosuspension was found highly effective compared to unprocessed drug against all the tested microorganism except E. coli, Shigella and C. albican. Conclusion: The simple precipitation-ultrasonication approach was efficiently employed for fabrication of ARM nanosuspension to scale up the batch size. Similarly, the solubility, antimalarial potential and antimicrobial efficacy of ARM in the form of nanosuspension were significantly enhanced. Findings from this study can persuade research interest for further comprehensive studies using animals model

    Investigation of anti-nociceptive, anti-inflammatory potential and ADMET studies of pure compounds isolated from Isodon rugosus Wall. ex Benth

    Get PDF
    The strong ethnopharmacological utilization of Isodon rugosus Wall. Ex. Benth is evident in the treatment of several types of pain and inflammation, including toothache, earache, abdominal pain, gastric pain, and generalized body pain and inflammation. Based on this background, the antinociceptive effects of the crude extract, various fractions, and essential oil have been reported previously. In this research work, we isolate and characterize pure bioactive compounds from I. rugosus and evaluate possible mechanisms using various in vivo and in vitro models. The pure compounds were analyzed for analgesic and anti-inflammatory activities through various assays. The column chromatography of the chloroform fraction of I. rugosus led to the identification of two pure compounds, i.e., 1 and 2. Compound 1 demonstrated notable inhibition (62% writhing inhibition, 72.77% COX-2 inhibition, and 76.97% 5-LOX inhibition) and anti-inflammatory potential (>50% paw edema inhibition at various intervals). The possible mechanism involved in antinociception was considered primarily, a concept that has already been elucidated through the application of naloxone (an antagonist of opioid receptors). The involvement of adrenergic receptors was investigated using a hot plate model (an adrenergic receptor antagonist). The strong ethnomedicinal analgesic background of I. rugosus, supported by previous reports and current observations, leads to the conclusion that I. rugosus is a potential source of antinociceptive and anti-inflammatory bioactive compounds. It may be concluded from the results that the isolated analgesic compounds of I. rugosus may be a possible alternative remedy for pain and inflammation management with admirable efficacy and safety profiles

    In Vivo Antistress Effects of Synthetic Flavonoids in Mice: Behavioral and Biochemical Approach

    No full text
    Natural flavonoids, in addition to some of their synthetic derivatives, are recognized for their remarkable medicinal properties. The present study was designed to investigate the in vitro antioxidant and in vivo antistress effect of synthetic flavonoids (flavones and flavonols) in mice, where stress was induced by injecting acetic acid and physically through swimming immobilization. Among the synthesized flavones (F1–F6) and flavonols (OF1–OF6), the mono para substituted methoxy containing F3 and OF3 exhibited maximum scavenging potential against DPPH (2,2-diphenyl-1-picrylhydrazyl) with IC50 of 31.46 ± 1.46 μg/mL and 25.54 ± 1.21 μg/mL, respectively. Minimum antioxidant potential was observed for F6 and OF6 with IC50 values of 174.24 ± 2.71 μg/mL and 122.33 ± 1.98 μg/mL, respectively, in comparison with tocopherol. The ABTS scavenging activity of all the synthesized flavones and flavonols were significantly higher than observed with DPPH assay, indicating their potency as good antioxidants and the effectiveness of ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) assay in evaluating antioxidant potentials of chemical substances. The flavonoids-treated animals showed a significant (* p < 0.05, ** p < 0.01 and *** p < 0.001, n = 8) reduction in the number of writhes and an increase in swimming endurance time. Stressful conditions changed plasma glucose, cholesterol and triglyceride levels, which were used as markers when evaluating stress in animal models. The level of these markers was nearly brought to normal when pre-treated with flavones and flavonols (10 mg/kg) for fifteen days in experimental animals. These compounds also considerably reduced the levels of lipid peroxidation (TBARS: Thiobarbituric acid reactive substances), which was significant (* p < 0.05, ** p < 0.01 and *** p < 0.001, n = 8) compared to the control group. A significant rise in the level of catalase and SOD (super oxide dismutase) was also observed in the treated groups. Diazepam (2 mg/kg) was used as the standard drug. Additionally, the flavonoids markedly altered the weight of the adrenal glands, spleen and brain in stress-induced mice. The findings of the study suggest that these flavonoids could be used as a remedy for stress and are capable of ameliorating diverse physiological and biochemical alterations associated with stressful conditions. However, further experiments are needed to confirm the observed potentials in other animal models, especially in those with a closer resemblance to humans. Toxicological evaluations are also equally important

    Effects of <i>Artemisia macrocephala</i> Jacquem on Memory Deficits and Brain Oxidative Stress in Streptozotocin-Induced Diabetic Mice

    No full text
    Different species of Artemisia have been reported to have therapeutic potential in treating various health disorders, including diabetes and memory dysfunction. The present study was planned to evaluate the effects of Artemisia macrocephala Jacquem crude extract and its subfractions as antiamnesic agents in streptozotocin-induced (STZ) diabetic mice. The in vivo behavioral studies were performed using the Y Maze test and novel object recognition test (NORT) test at doses of 100 and 200 mg/kg of crude extract and 75 and 150 mg/kg of fractions. The in vitro and ex vivo anticholinesterase activities, along with biochemical parameters (superoxide dismutase, catalase, glutathione and lipid peroxidation) in the brain, were evaluated. Blood glucose levels were monitored with a glucometer; crude extract and fractions reduced the glucose level considerably, with some differences in the extent of their efficacies. The crude extract and fractions demonstrated significant inhibitory activity against cholinesterases (AChE and BuChE) in vitro. Crude, chloroform and ethyl acetate extract were found to be more potent than the other fractions, with IC50 of Crd-Am = 116.36 ± 1.48 and 240.52 ± 1.35 µg/mL, Chl-Am = 52.68 ± 1.09 and 57.45 ± 1.39 µg/mL and Et-Am = 75.19 ± 1.02 and 116.58 ± 1.09 µg/mL, respectively. Oxidative stress biomarkers like superoxide dismutase, catalase and glutathione levels were elevated, whereas MDA levels were reduced by crude extract and all fractions with little difference in their respective values. The Y-maze test and novel object recognition test demonstrated declines in memory impairment in groups (n = 6) treated with crude extract and fractions as compared to STZ diabetic (amnesic) group. The most active fraction, Chl-Am, was also subjected to isolation of bioactive compounds; three compounds were obtained in pure state and designated as AB-I, AB-II and AB-III. Overall, the results of the study showed that Artemisia macrocephala Jacquem enhanced the memory impairment associated with diabetes, elevated acetylcholine levels and ameliorated oxidative stress. Further studies are needed to explore the beneficial role of the secondary metabolites isolated in the present study as memory enhancers. Toxicological aspects of the extracts are also important and need to be evaluated in other animal models

    Efficient design to fabricate smart Lumefantrine nanocrystals using DENA® particle engineering technology: Characterisation, in vitro and in vivo antimalarial evaluation and assessment of acute and sub-acute toxicity

    No full text
    Nanocrystalization technologies have a great potential to substantially increase solubility as well as alleviate the erratic bioavailability behaviour of a range of poorly water soluble drugs. The aim of the current study was to fabricate smart nanocrystals of lumefantrine (LF) using wet milling technology (DENA DM-100) with the subsequent in vitro, in vivo evaluation and toxicity screening. This technology successfully produced nanocrystals with an average particle size (214.1 ± 0.2 nm) and PDI (0.201 ± 0.06) in a period of less than 1 h. DSC and PXRD were used to confirm crystallinity of the processed LF. The dissolution rate and saturation solubility of the processed LF was significantly (P < 0.05) increased compared to the raw and marketed tablets. The IC50 value of LF nanocrystals was significantly (P < 0.05) lower than the IC50 value of the raw drug and marketed tablets. In addition, LF nanocrystals at the same dose (30 mg/kg), showed significantly (P < 0.05) the highest reduction in the percentage of parasitemia compared to its other counterparts against P. vivax. The LD50 value of LF nanocrystals in the acute toxicity was between 1000 and 1500 mg/kg and was devoid of any observable sub-acute toxicity. The histopathological investigations and impact of LF nanocrystals on different internal organs of the chosen animal model were found comparable to the saline treated animal group. The results of current study suggested that wet milling can be effectively used to fabricate nanocrystals of LF both in acidic and aqueous media with enhanced antimalarial activities and a similar safety profile

    Phytochemical Profiling, Anti-Inflammatory, Anti-Oxidant and In-Silico Approach of Cornus macrophylla Bioss (Bark)

    No full text
    The objective of the current study was to evaluate the phytochemical and pharmacological potential of the Cornus macrophylla. C. macrophylla belongs to the family Cornaceae. It is locally known as khadang and is used for the treatment of different diseases such as analgesic, tonic, diuretic, malaria, inflammation, allergy, infections, cancer, diabetes, and lipid peroxidative. The crude extract and different fractions of C. macrophyll were evaluated by gas chromatography and mass spectroscopy (GC-MS), which identified the most potent bioactive phytochemicals. The antioxidant ability of C. macrophylla was studied by 2,2&prime;-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) and 1,1 diphenyl-2-picryl-hydrazyl (DPPH) methods. The crude and subsequent fractions of the C. macrophylla were also tested against anti-inflammatory enzymes using COX-2 (Cyclooxygenase-2) and 5-LOX (5-lipoxygenase) assays. The molecular docking was carried out using molecular operating environment (MOE) software. The GC-MS study of C. macrophylla confirmed forty-eight compounds in ethyl acetate (Et.AC) fraction and revealed that the Et.AC fraction was the most active fraction. The antioxidant ability of the Et.AC fraction showed an IC50 values of 09.54 &mu;g/mL and 7.8 &mu;g/mL against ABTS and DPPH assay respectively. Among all the fractions of C. macrophylla, Et.AC showed excellent activity against COX-2 and 5-LOX enzyme. The observed IC50 values were 93.35 &mu;g/mL against COX-2 and 75.64 &mu;g/mL for 5-LOX respectively. Molecular docking studies supported these in vitro results and confirmed the anti-inflammatory potential of C. macrophylla. C. macrophylla has promising potential as a source for the development of new drugs against inflammation in the future
    corecore