965 research outputs found
Analysis of 3D Face Reconstruction
This thesis investigates the long standing problem of 3D reconstruction from a single 2D face
image. Face reconstruction from a single 2D face image is an ill posed problem involving estimation of the intrinsic and the extrinsic camera parameters, light parameters, shape parameters
and the texture parameters. The proposed approach has many potential applications in the
law enforcement, surveillance, medicine, computer games and the entertainment industries.
This problem is addressed using an analysis by synthesis framework by reconstructing a 3D
face model from identity photographs. The identity photographs are a widely used medium for
face identi cation and can be found on identity cards and passports.
The novel contribution of this thesis is a new technique for creating 3D face models from a single
2D face image. The proposed method uses the improved dense 3D correspondence obtained
using rigid and non-rigid registration techniques. The existing reconstruction methods use the
optical
ow method for establishing 3D correspondence. The resulting 3D face database is used
to create a statistical shape model.
The existing reconstruction algorithms recover shape by optimizing over all the parameters
simultaneously. The proposed algorithm simplifies the reconstruction problem by using a step
wise approach thus reducing the dimension of the parameter space and simplifying the opti-
mization problem. In the alignment step, a generic 3D face is aligned with the given 2D face
image by using anatomical landmarks. The texture is then warped onto the 3D model by using
the spatial alignment obtained previously. The 3D shape is then recovered by optimizing over
the shape parameters while matching a texture mapped model to the target image.
There are a number of advantages of this approach. Firstly, it simpli es the optimization requirements and makes the optimization more robust. Second, there is no need to accurately
recover the illumination parameters. Thirdly, there is no need for recovering the texture parameters by using a texture synthesis approach. Fourthly, quantitative analysis is used for
improving the quality of reconstruction by improving the cost function. Previous methods use
qualitative methods such as visual analysis, and face recognition rates for evaluating reconstruction accuracy.
The improvement in the performance of the cost function occurs as a result of improvement
in the feature space comprising the landmark and intensity features. Previously, the feature
space has not been evaluated with respect to reconstruction accuracy thus leading to inaccurate
assumptions about its behaviour.
The proposed approach simpli es the reconstruction problem by using only identity images,
rather than placing eff ort on overcoming the pose, illumination and expression (PIE) variations.
This makes sense, as frontal face images under standard illumination conditions are widely
available and could be utilized for accurate reconstruction. The reconstructed 3D models with
texture can then be used for overcoming the PIE variations
Learning Prices for Repeated Auctions with Strategic Buyers
Inspired by real-time ad exchanges for online display advertising, we
consider the problem of inferring a buyer's value distribution for a good when
the buyer is repeatedly interacting with a seller through a posted-price
mechanism. We model the buyer as a strategic agent, whose goal is to maximize
her long-term surplus, and we are interested in mechanisms that maximize the
seller's long-term revenue. We define the natural notion of strategic regret
--- the lost revenue as measured against a truthful (non-strategic) buyer. We
present seller algorithms that are no-(strategic)-regret when the buyer
discounts her future surplus --- i.e. the buyer prefers showing advertisements
to users sooner rather than later. We also give a lower bound on strategic
regret that increases as the buyer's discounting weakens and shows, in
particular, that any seller algorithm will suffer linear strategic regret if
there is no discounting.Comment: Neural Information Processing Systems (NIPS 2013
Sparse Array DFT Beamformers for Wideband Sources
Sparse arrays are popular for performance optimization while keeping the
hardware and computational costs down. In this paper, we consider sparse arrays
design method for wideband source operating in a wideband jamming environment.
Maximizing the signal-to-interference plus noise ratio (MaxSINR) is adopted as
an optimization objective for wideband beamforming. Sparse array design problem
is formulated in the DFT domain to process the source as parallel narrowband
sources. The problem is formulated as quadratically constraint quadratic
program (QCQP) alongside the weighted mixed -norm squared
penalization of the beamformer weight vector. The semidefinite relaxation (SDR)
of QCQP promotes sparse solutions by iteratively re-weighting beamformer based
on previous iteration. It is shown that the DFT approach reduces the
computational cost considerably as compared to the delay line approach, while
efficiently utilizing the degrees of freedom to harness the maximum output SINR
offered by the given array aperture
Impact of information technology in trade facilitation on small and medium-sized enterprises in Bangladesh
This paper focuses specifically on one particular aspect of trade facilitation in the context of Bangladesh, i.e., impact on SMEs of IT in trade facilitation. It is hoped that the policy recommendations offered in this paper will be useful in furthering the cause of SME internationalization in Bangladesh.Trade Facilitation, Bangladesh, SMEs, Information Technology
Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation
The electrocardiogram (ECG) is one of the most extensively employed signals
used in the diagnosis and prediction of cardiovascular diseases (CVDs). The ECG
signals can capture the heart's rhythmic irregularities, commonly known as
arrhythmias. A careful study of ECG signals is crucial for precise diagnoses of
patients' acute and chronic heart conditions. In this study, we propose a
two-dimensional (2-D) convolutional neural network (CNN) model for the
classification of ECG signals into eight classes; namely, normal beat,
premature ventricular contraction beat, paced beat, right bundle branch block
beat, left bundle branch block beat, atrial premature contraction beat,
ventricular flutter wave beat, and ventricular escape beat. The one-dimensional
ECG time series signals are transformed into 2-D spectrograms through
short-time Fourier transform. The 2-D CNN model consisting of four
convolutional layers and four pooling layers is designed for extracting robust
features from the input spectrograms. Our proposed methodology is evaluated on
a publicly available MIT-BIH arrhythmia dataset. We achieved a state-of-the-art
average classification accuracy of 99.11\%, which is better than those of
recently reported results in classifying similar types of arrhythmias. The
performance is significant in other indices as well, including sensitivity and
specificity, which indicates the success of the proposed method.Comment: 14 pages, 5 figures, accepted for future publication in Remote
Sensing MDPI Journa
Studies in Trade and Investment: The Development Impact of Information Technology in Trade Facilitation
In Bangladesh, SMEs are very important players in the economy. About 90 per cent of all industrial units in Bangladesh are SMEs, which generate some 25 per cent of the gross domestic product (GDP), employ about 31 million people and provide 75 per cent of household income. There is no denying that SMEs act as the driver of the economy and are very important for national economic and social development. They serve as employers creating new jobs and providers of products for daily needs. They also act as stewards over employees and the community. However, SMEs in developing and least developed countries face considerable barriers in running their businesses and are often constrained financially and technologically. This includes inadequate and/or complex sets of policies by the respective governments. Such impediments largely contribute to the under-involvement of SMEs in international markets. This is where the nature and extent of SME participation in the global trading system needs to be highlighted. Trade facilitation is thus a crucial factor in providing SMEs with access to global markets.Trade facilitation, ICT, IT, SMEs, international trade, Bangladesh
- …