Inspired by real-time ad exchanges for online display advertising, we
consider the problem of inferring a buyer's value distribution for a good when
the buyer is repeatedly interacting with a seller through a posted-price
mechanism. We model the buyer as a strategic agent, whose goal is to maximize
her long-term surplus, and we are interested in mechanisms that maximize the
seller's long-term revenue. We define the natural notion of strategic regret
--- the lost revenue as measured against a truthful (non-strategic) buyer. We
present seller algorithms that are no-(strategic)-regret when the buyer
discounts her future surplus --- i.e. the buyer prefers showing advertisements
to users sooner rather than later. We also give a lower bound on strategic
regret that increases as the buyer's discounting weakens and shows, in
particular, that any seller algorithm will suffer linear strategic regret if
there is no discounting.Comment: Neural Information Processing Systems (NIPS 2013