12 research outputs found

    Branch-recombinant Gaussian processes for analysis of perturbations in biological time series.

    Get PDF
    MOTIVATION: A common class of behaviour encountered in the biological sciences involves branching and recombination. During branching, a statistical process bifurcates resulting in two or more potentially correlated processes that may undergo further branching; the contrary is true during recombination, where two or more statistical processes converge. A key objective is to identify the time of this bifurcation (branch or recombination time) from time series measurements, e.g. by comparing a control time series with perturbed time series. Gaussian processes (GPs) represent an ideal framework for such analysis, allowing for nonlinear regression that includes a rigorous treatment of uncertainty. Currently, however, GP models only exist for two-branch systems. Here, we highlight how arbitrarily complex branching processes can be built using the correct composition of covariance functions within a GP framework, thus outlining a general framework for the treatment of branching and recombination in the form of branch-recombinant Gaussian processes (B-RGPs). RESULTS: We first benchmark the performance of B-RGPs compared to a variety of existing regression approaches, and demonstrate robustness to model misspecification. B-RGPs are then used to investigate the branching patterns of Arabidopsis thaliana gene expression following inoculation with the hemibotrophic bacteria, Pseudomonas syringae DC3000, and a disarmed mutant strain, hrpA. By grouping genes according to the number of branches, we could naturally separate out genes involved in basal immune response from those subverted by the virulent strain, and show enrichment for targets of pathogen protein effectors. Finally, we identify two early branching genes WRKY11 and WRKY17, and show that genes that branched at similar times to WRKY11/17 were enriched for W-box binding motifs, and overrepresented for genes differentially expressed in WRKY11/17 knockouts, suggesting that branch time could be used for identifying direct and indirect binding targets of key transcription factors. AVAILABILITY AND IMPLEMENTATION: https://github.com/cap76/BranchingGPs. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Principles of early human development and germ cell program from conserved model systems

    Get PDF
    Human primordial germ cells (hPGCs), the precursors of sperm and eggs, originate during week 2-3 of early postimplantation development(1). Using in vitro models of hPGC induction(2-4), recent studies suggest striking mechanistic differences in specification of human and mouse PGCs(5). This may partly be due to the divergence in their pluripotency networks, and early postimplantation development(6-8). Since early human embryos are inaccessible for direct studies, we considered alternatives, including porcine embryos that, as in humans, develop as bilaminar embryonic discs. Here we show that porcine PGCs (pPGCs) originate from the posterior pre-primitive streak competent epiblast by sequential upregulation of SOX17 and BLIMP1 in response to WNT and BMP signalling. Together with human and monkey in vitro models simulating peri-gastrulation development, we show conserved principles for epiblast development for competency for PGC fate, followed by initiation of the epigenetic program(9-11), regulated by a balanced SOX17–BLIMP1 gene dosage. Our combinatorial approach using human, porcine and monkey in vivo and in vitro models, provides synthetic insights on early human development

    Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors.

    Get PDF
    Loss-of-function mutations of cyclic-AMP response element binding protein, binding protein (CREBBP) are prevalent in lymphoid malignancies. However, the tumour suppressor functions of CREBBP remain unclear. We demonstrate that loss of Crebbp in murine haematopoietic stem and progenitor cells (HSPCs) leads to increased development of B-cell lymphomas. This is preceded by accumulation of hyperproliferative lymphoid progenitors with a defective DNA damage response (DDR) due to a failure to acetylate p53. We identify a premalignant lymphoma stem cell population with decreased H3K27ac, which undergoes transcriptional and genetic evolution due to the altered DDR, resulting in lymphomagenesis. Importantly, when Crebbp is lost later in lymphopoiesis, cellular abnormalities are lost and tumour generation is attenuated. We also document that CREBBP mutations may occur in HSPCs from patients with CREBBP-mutated lymphoma. These data suggest that earlier loss of Crebbp is advantageous for lymphoid transformation and inform the cellular origins and subsequent evolution of lymphoid malignancies
    corecore