595 research outputs found

    On the construction of high-order force gradient algorithms for integration of motion in classical and quantum systems

    Full text link
    A consequent approach is proposed to construct symplectic force-gradient algorithms of arbitrarily high orders in the time step for precise integration of motion in classical and quantum mechanics simulations. Within this approach the basic algorithms are first derived up to the eighth order by direct decompositions of exponential propagators and further collected using an advanced composition scheme to obtain the algorithms of higher orders. Contrary to the scheme by Chin and Kidwell [Phys. Rev. E 62, 8746 (2000)], where high-order algorithms are introduced by standard iterations of a force-gradient integrator of order four, the present method allows to reduce the total number of expensive force and its gradient evaluations to a minimum. At the same time, the precision of the integration increases significantly, especially with increasing the order of the generated schemes. The algorithms are tested in molecular dynamics and celestial mechanics simulations. It is shown, in particular, that the efficiency of the new fourth-order-based algorithms is better approximately in factors 5 to 1000 for orders 4 to 12, respectively. The results corresponding to sixth- and eighth-order-based composition schemes are also presented up to the sixteenth order. For orders 14 and 16, such highly precise schemes, at considerably smaller computational costs, allow to reduce unphysical deviations in the total energy up in 100 000 times with respect to those of the standard fourth-order-based iteration approach.Comment: 23 pages, 2 figures; submitted to Phys. Rev.

    Dynamical Properties and Plasmon Dispersion of a Weakly Degenerate Correlated One-Component Plasma

    Get PDF
    Classical Molecular Dynamics (MD) simulations for a one-component plasma (OCP) are presented. Quantum effects are included in the form of the Kelbg potential. Results for the dynamical structure factor are compared with the Vlasov and RPA (random phase approximation) theories. The influence of the coupling parameter Γ\Gamma, degeneracy parameter ρΛ3\rho \Lambda^3 and the form of the pair interaction on the optical plasmon dispersion is investigated. An improved analytical approximation for the dispersion of Langmuir waves is presented.Comment: 23 pages, includes 7 ps/eps-figures and 2 table

    Spontaneous alloying in binary metal microclusters - A molecular dynamics study -

    Full text link
    Microcanonical molecular dynamics study of the spontaneous alloying(SA), which is a manifestation of fast atomic diffusion in a nano-sized metal cluster, is done in terms of a simple two dimensional binary Morse model. Important features observed by Yasuda and Mori are well reproduced in our simulation. The temperature dependence and size dependence of the SA phenomena are extensively explored by examining long time dynamics. The dominant role of negative heat of solution in completing the SA is also discussed. We point out that a presence of melting surface induces the diffusion of core atoms even if they are solid-like. In other words, the {\it surface melting} at substantially low temperature plays a key role in attaining the SA.Comment: 15 pages, 12 fgures, Submitted to Phys.Rev.

    Discovery of Bright Galactic R Coronae Borealis and DY Persei Variables: Rare Gems Mined from ACVS

    Full text link
    We present the results of a machine-learning (ML) based search for new R Coronae Borealis (RCB) stars and DY Persei-like stars (DYPers) in the Galaxy using cataloged light curves from the All-Sky Automated Survey (ASAS) Catalog of Variable Stars (ACVS). RCB stars - a rare class of hydrogen-deficient carbon-rich supergiants - are of great interest owing to the insights they can provide on the late stages of stellar evolution. DYPers are possibly the low-temperature, low-luminosity analogs to the RCB phenomenon, though additional examples are needed to fully establish this connection. While RCB stars and DYPers are traditionally identified by epochs of extreme dimming that occur without regularity, the ML search framework more fully captures the richness and diversity of their photometric behavior. We demonstrate that our ML method can use newly discovered RCB stars to identify additional candidates within the same data set. Our search yields 15 candidates that we consider likely RCB stars/DYPers: new spectroscopic observations confirm that four of these candidates are RCB stars and four are DYPers. Our discovery of four new DYPers increases the number of known Galactic DYPers from two to six; noteworthy is that one of the new DYPers has a measured parallax and is m ~ 7 mag, making it the brightest known DYPer to date. Future observations of these new DYPers should prove instrumental in establishing the RCB connection. We consider these results, derived from a machine-learned probabilistic classification catalog, as an important proof-of-concept for the efficient discovery of rare sources with time-domain surveys.Comment: 18 pages, 2 new figures, accepted for publication in Ap

    An orbital-free molecular dynamics study of melting in K_20, K_55, K_92, K_142, Rb_55 and Cs_55 clusters

    Full text link
    The melting-like transition in potasium clusters K_N, with N=20, 55, 92 and 142, is studied by using an orbital-free density-functional constant-energy molecular dynamics simulation method, and compared to previous theoretical results on the melting-like transition in sodium clusters of the same sizes. Melting in potasium and sodium clusters proceeds in a similar way: a surface melting stage develops upon heating before the homogeneous melting temperature is reached. Premelting effects are nevertheless more important and more easily established in potasium clusters, and the transition regions spread over temperature intervals which are wider than in the case of sodium. For all the sizes considered, the percentage melting temperature reduction when passing from Na to K clusters is substantially larger than in the bulk. Once those two materials have been compared for a number of different cluster sizes, we study the melting-like transition in Rb_55 and Cs_55 clusters and make a comparison with the melting behavior of Na_55 and K_55. As the atomic number increases, the height of the specific heat peaks decreases, their width increases, and the melting temperature decreases as in bulk melting, but in a more pronounced way.Comment: LaTeX file. 6 pages with 17 pictures. Final version with minor change

    Micro Structured Sensors for Neutron Detection

    Get PDF
    The shortage of 3He gas, identified as a problem several years ago, initiated research into alternative neutron detectors for various applications. One such technology is the microstructured semiconductor neutron detector (MSND). These compact detectors have microstructures etched deeply into the substrates that are subsequently backfilled with neutron reactive material. Single sided devices typically have thermal neutron detection efficiencies exceeding 30%, while double sided microstructured semiconductor neutron detectors (DS-MSND) have yielded \u3e69% thermal neutron detection efficiency. Both MSNDs and DS-MSNDs have been integrated into compact low-noise and low-power electronics modules. Dosimetry calculations indicate that these detectors can be used as active wearable neutron dosimeters. A discussion on the physics, performance and instrumentation of these MSNDs will be presented. The radiation environment in a nuclear reactor precludes the use of semiconductor detectors for in-core sensors, leading to the invention of another miniaturized neutron detector, the micro- pocket fission detector (MPFD). The detectors were developed for real time reactor power monitoring and also for pulse tracking for power excursion experiments. These miniaturized fission chambers have gas pockets on the order of 1 mm3 with a small concentration of uranium electrodeposited inside the gas chamber. The detectors are composed of radiation hard materials and assembled without adhesives. The small geometries can be assembled in arrays to transmit reactor power at various locations. Stable device operation was confirmed by testing under steady-state reactor conditions. Reactor power transients were observed in real-time. Design details and performance of MPFDs will be presented

    Exploring the Leo II dSph I.: The Variable Star Content

    Full text link
    We present the first comprehensive catalogue of variable stars in the Leo II dwarf spheroidal galaxy. We have identified 148 RR Lyrae type variables, of which 140 were amenable to derivation of variability parameters with our data. We have also confirmed the existence of four anomalous Cepheids as identified in previous studies. The average period of the RR Lyrae ab variables (0.62 days), the fraction of c variables (0.24) and the minimum period of the RR Lyrae ab variables (0.51 days) all define Leo II as an "Oosterhoff intermediate" galaxy. We have used the properties of these variables to derive a metallicity for Leo II of approximately [Fe/H]=-1.9. The presence of longer period, higher amplitude RR Lyrae variable implies a metallicity distribution that extends to as poor as [Fe/H]=-2.3. Leo II's location on the period-metallicity relation of clusters, like that of other ``Ootershoff intermediate'' objects, falls between the Oosterhoff Class I and Oosterhoff Class II clusters. The properties of the variable populations of these objects are consistent with the idea that the Oosterhoff "dichotomy" is a continuum. The gap between the classes seems to be explained by the horizontal branch of Galactic globular clusters shifting away from the instability strip at at intermediate metallicities. However, Leo II, as well as other Oosterhoff intermediate objects, has a second parameter effect strong enough to leave horizontal branch stars in the instability strip.Comment: 44 pages, 8 figures, 3 tables, accepted in Astronomical Journa

    Structure and relaxations in liquid and amorphous Selenium

    Get PDF
    We report a molecular dynamics simulation of selenium, described by a three-body interaction. The temperatures T_g and T_c and the structural properties are in agreement with experiment. The mean nearest neighbor coordination number is 2.1. A small pre-peak at about 1 AA^-1 can be explained in terms of void correlations. In the intermediate self-scattering function, i.e. the density fluctuation correlation, classical behavior, alpha- and beta-regimes, is found. We also observe the plateau in the beta-regime below T_g. In a second step, we investigated the heterogeneous and/or homogeneous behavior of the relaxations. At both short and long times the relaxations are homogeneous (or weakly heterogeneous). In the intermediate time scale, lowering the temperature increases the heterogeneity. We connect these different domains to the vibrational (ballistic), beta- and alpha-regimes. We have also shown that the increase in heterogeneity can be understood in terms of relaxations

    Atomic-scale modeling of the deformation of nanocrystalline metals

    Get PDF
    Nanocrystalline metals, i.e. metals with grain sizes from 5 to 50 nm, display technologically interesting properties, such as dramatically increased hardness, increasing with decreasing grain size. Due to the small grain size, direct atomic-scale simulations of plastic deformation of these materials are possible, as such a polycrystalline system can be modeled with the computational resources available today. We present molecular dynamics simulations of nanocrystalline copper with grain sizes up to 13 nm. Two different deformation mechanisms are active, one is deformation through the motion of dislocations, the other is sliding in the grain boundaries. At the grain sizes studied here the latter dominates, leading to a softening as the grain size is reduced. This implies that there is an ``optimal'' grain size, where the hardness is maximal. Since the grain boundaries participate actively in the deformation, it is interesting to study the effects of introducing impurity atoms in the grain boundaries. We study how silver atoms in the grain boundaries influence the mechanical properties of nanocrystalline copper.Comment: 10 pages, LaTeX2e, PS figures and sty files included. To appear in Mater. Res. Soc. Symp. Proc. vol 538 (invited paper). For related papers, see http://www.fysik.dtu.dk/~schiotz/publist.htm
    corecore