461 research outputs found

    Digestive Enzymes of an Insect

    Get PDF
    Author Institution: Department of Zoology and Entomology, Ohio State Universit

    Apollo experience report guidance and control systems: Primary guidance, navigation, and control system development

    Get PDF
    The primary guidance, navigation, and control systems for both the lunar module and the command module are described. Development of the Apollo primary guidance systems is traced from adaptation of the Polaris Mark II system through evolution from Block I to Block II configurations; the discussion includes design concepts used, test and qualification programs performed, and major problems encountered. The major subsystems (inertial, computer, and optical) are covered. Separate sections on the inertial components (gyroscopes and accelerometers) are presented because these components represent a major contribution to the success of the primary guidance, navigation, and control system

    Impact of a leptin single nucleotide polymorphism and zilpaterol hydrochloride on growth and carcass characteristics in finishing steers

    Get PDF
    A total of 4,178 steers (mean initial BW = 403.9 ± 16.04 kg) were used to test the interactive effects, if any, of leptin R25C genotypes (CC, CT, or TT) and zilpaterol hydrochloride (ZH) feeding duration on growth performance and carcass traits. Steers were blocked by arrival at the feed yard, genotyped for the leptin SNP, allotted to genotype-specific pens (90 steers/pen), and assigned randomly within genotype and block to 0 or 21 d of dietary ZH. All pens within a block were slaughtered on the same day (132.1 ± 10.9 d on feed). Final BW of steers fed ZH was 6.0 kg heavier (P = 0.008), and ZH-fed steers had greater (P = 0.003) ADG than steers not fed ZH. Feeding ZH decreased DMI in steers with increased frequency of the T allele (9.67, 9.53, and 9.28 kg/d for CC, CT, and TT, respectively), but DMI increased with the frequency of the T allele (9.68, 9.90, and 10.1 kg for CC, CT, and TT, respectively) when ZH was not fed (leptin genotype × ZH, P = 0.011). At the conclusion of the study, ultrasonic fat was greatest for TT steers (11.4 ± 0.28 mm) and least (P = 0.003) for CC steers (11.0 ± 0.25 mm). Regardless of ZH-feeding duration, TT steers produced a greater (P = 0.006) percentage of USDA yield grade (YG) 4 or higher carcasses (5.4 vs. 2.7%) and a lesser (P = 0.006) percentage of YG 1 carcasses (17.7 vs. 26.8%) than CC steers. In addition, ZH-fed steers produced a greater (P \u3c 0.001) percentage of USDA YG 1 carcasses (25.9 vs. 16.2%) and a lesser (P \u3c 0.001) percentage of YG 4 or higher carcasses (1.6 vs. 6.0%) than steers fed the control diet. Marbling scores and the percentage of carcasses grading USDA Choice and Prime were greater in TT than CC steers when fed diets devoid of ZH, but both marbling and quality grades did not differ among leptin genotypes when fed ZH for 21 d (leptin genotype × ZH, P ≤ 0.03). The amount of HCW gain tended to be less (P = 0.095) for steers of the TT genotype (12.7 kg) than either CC (16.3 kg) or CT (17.0 kg) genotypes. Results indicated that leptin R25C genotype impacted most traits associated with fatness whereas feeding ZH for 21 d affected HCW and ADG positively but impacted feed intake, marbling, and USDA quality grades negatively

    Entangled Dilaton Dyons

    Full text link
    Einstein-Maxwell theory coupled to a dilaton is known to give rise to extremal solutions with hyperscaling violation. We study the behaviour of these solutions in the presence of a small magnetic field. We find that in a region of parameter space the magnetic field is relevant in the infra-red and completely changes the behaviour of the solution which now flows to an AdS2×R2AdS_2\times R^2 attractor. As a result there is an extensive ground state entropy and the entanglement entropy of a sufficiently big region on the boundary grows like the volume. In particular, this happens for values of parameters at which the purely electric theory has an entanglement entropy growing with the area, AA, like Alog(A)A \log(A) which is believed to be a characteristic feature of a Fermi surface. Some other thermodynamic properties are also analysed and a more detailed characterisation of the entanglement entropy is also carried out in the presence of a magnetic field. Other regions of parameter space not described by the AdS2×R2AdS_2\times R^2 end point are also discussed.Comment: Some comments regarding comparison with weakly coupled Fermi liquid changed, typos corrected and caption of a figure modifie

    Large-density field theory, viscosity, and "2kF2k_F" singularities from string duals

    Get PDF
    We analyze systems where an effective large-N expansion arises naturally in gauge theories without a large number of colors: a sufficiently large charge density alone can produce a perturbative string ('tHooft) expansion. One example is simply the well-known NS5/F1 system dual to AdS3×T4×S3AdS_3\times T^4\times S^3, here viewed as a 5+1 dimensional theory at finite density. This model is completely stable, and we find that the existing string-theoretic solution of this model yields two interesting results. First, it indicates that the shear viscosity is not corrected by α\alpha' effects in this system. For flow perpendicular to the F1 strings the viscosity to entropy ratio take the usual value 1/4π1/4\pi, but for flow parallel to the F1's it vanishes as T2T^2 at low temperature. Secondly, it encodes singularities in correlation functions coming from low-frequency modes at a finite value of the momentum along the T4T^4 directions. This may provide a strong coupling analogue of finite density condensed matter systems for which fermionic constituents of larger operators contribute so-called "2kF2k_F" singularities. In the NS5/F1 example, stretched strings on the gravity side play the role of these composite operators. We explore the analogue for our system of the Luttinger relation between charge density and the volume bounded by these singular surfaces. This model provides a clean example where the string-theoretic UV completion of the gravity dual to a finite density field theory plays a significant and calculable role.Comment: 28 pages. v2: added reference

    HIGH-PRECISION GAS CHROMATOGRAPHY.

    Full text link

    Holographic Geometry of Entanglement Renormalization in Quantum Field Theories

    Get PDF
    We study a conjectured connection between the AdS/CFT and a real-space quantum renormalization group scheme, the multi-scale entanglement renormalization ansatz (MERA). By making a close contact with the holographic formula of the entanglement entropy, we propose a general definition of the metric in the MERA in the extra holographic direction, which is formulated purely in terms of quantum field theoretical data. Using the continuum version of the MERA (cMERA), we calculate this emergent holographic metric explicitly for free scalar boson and free fermions theories, and check that the metric so computed has the properties expected from AdS/CFT. We also discuss the cMERA in a time-dependent background induced by quantum quench and estimate its corresponding metric.Comment: 42pages, 9figures, reference added, minor chang

    Entanglement Entropy from a Holographic Viewpoint

    Get PDF
    The entanglement entropy has been historically studied by many authors in order to obtain quantum mechanical interpretations of the gravitational entropy. The discovery of AdS/CFT correspondence leads to the idea of holographic entanglement entropy, which is a clear solution to this important problem in gravity. In this article, we would like to give a quick survey of recent progresses on the holographic entanglement entropy. We focus on its gravitational aspects, so that it is comprehensible to those who are familiar with general relativity and basics of quantum field theory.Comment: Latex, 30 pages, invited review for Classical and Quantum Gravity, minor correction

    Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations

    Get PDF
    This study presents a historical review, a meta-analysis, and recommendations for users about weight–length relationships, condition factors and relative weight equations. The historical review traces the developments of the respective concepts. The meta-analysis explores 3929 weight–length relationships of the type W = aLb for 1773 species of fishes. It shows that 82% of the variance in a plot of log a over b can be explained by allometric versus isometric growth patterns and by different body shapes of the respective species. Across species median b = 3.03 is significantly larger than 3.0, thus indicating a tendency towards slightly positive-allometric growth (increase in relative body thickness or plumpness) in most fishes. The expected range of 2.5 < b < 3.5 is confirmed. Mean estimates of b outside this range are often based on only one or two weight–length relationships per species. However, true cases of strong allometric growth do exist and three examples are given. Within species, a plot of log a vs b can be used to detect outliers in weight–length relationships. An equation to calculate mean condition factors from weight–length relationships is given as Kmean = 100aLb−3. Relative weight Wrm = 100W/(amLbm) can be used for comparing the condition of individuals across populations, where am is the geometric mean of a and bm is the mean of b across all available weight–length relationships for a given species. Twelve recommendations for proper use and presentation of weight–length relationships, condition factors and relative weight are given

    Moduli Spaces of Cold Holographic Matter

    Full text link
    We use holography to study (3+1)-dimensional N=4 supersymmetric Yang-Mills theory with gauge group SU(Nc), in the large-Nc and large-coupling limits, coupled to a single massless (n+1)-dimensional hypermultiplet in the fundamental representation of SU(Nc), with n=3,2,1. In particular, we study zero-temperature states with a nonzero baryon number charge density, which we call holographic matter. We demonstrate that a moduli space of such states exists in these theories, specifically a Higgs branch parameterized by the expectation values of scalar operators bilinear in the hypermultiplet scalars. At a generic point on the Higgs branch, the R-symmetry and gauge group are spontaneously broken to subgroups. Our holographic calculation consists of introducing a single probe Dp-brane into AdS5 times S^5, with p=2n+1=7,5,3, introducing an electric flux of the Dp-brane worldvolume U(1) gauge field, and then obtaining explicit solutions for the worldvolume fields dual to the scalar operators that parameterize the Higgs branch. In all three cases, we can express these solutions as non-singular self-dual U(1) instantons in a four-dimensional space with a metric determined by the electric flux. We speculate on the possibility that the existence of Higgs branches may point the way to a counting of the microstates producing a nonzero entropy in holographic matter. Additionally, we speculate on the possible classification of zero-temperature, nonzero-density states described holographically by probe D-branes with worldvolume electric flux.Comment: 56 pages, 8 PDF images, 4 figure
    corecore