24 research outputs found

    Utility of serum procalcitonin values in patients with acute exacerbations of chronic obstructive pulmonary disease: a cautionary note

    Get PDF
    Background: Serum procalcitonin levels have been used as a biomarker of invasive bacterial infection and recently have been advocated to guide antibiotic therapy in patients with chronic obstructive pulmonary disease (COPD). However, rigorous studies correlating procalcitonin levels with microbiologic data are lacking. Acute exacerbations of COPD (AECOPD) have been linked to viral and bacterial infection as well as noninfectious causes. Therefore, we evaluated procalcitonin as a predictor of viral versus bacterial infection in patients hospitalized with AECOPD with and without evidence of pneumonia. Methods: Adults hospitalized during the winter with symptoms consistent with AECOPD underwent extensive testing for viral, bacterial, and atypical pathogens. Serum procalcitonin levels were measured on day 1 (admission), day 2, and at one month. Clinical and laboratory features of subjects with viral and bacterial diagnoses were compared.Results: In total, 224 subjects with COPD were admitted for 240 respiratory illnesses. Of these, 56 had pneumonia and 184 had AECOPD alone. A microbiologic diagnosis was made in 76 (56%) of 134 illnesses with reliable bacteriology (26 viral infection, 29 bacterial infection, and 21 mixed viral bacterial infection). Mean procalcitonin levels were significantly higher in patients with pneumonia compared with AECOPD. However, discrimination between viral and bacterial infection using a 0.25 ng/mL threshold for bacterial infection in patients with AECOPD was poor. Conclusion: Procalcitonin is useful in COPD patients for alerting clinicians to invasive bacterial infections such as pneumonia but it does not distinguish bacterial from viral and noninfectious causes of AECOPD

    Femtosecond quantification of void evolution during rapid material failure

    Get PDF
    Understanding high-velocity impact, and the subsequent high strain rate material deformation and potential catastrophic failure, is of critical importance across a range of scientific and engineering disciplines that include astrophysics, materials science, and aerospace engineering. The deformation and failure mechanisms are not thoroughly understood, given the challenges of experimentally quantifying material evolution at extremely short time scales. Here, copper foils are rapidly strained via picosecond laser ablation and probed in situ with femtosecond x-ray free electron (XFEL) pulses. Small-angle x-ray scattering (SAXS) monitors the void distribution evolution, while wide-angle scattering (WAXS) simultaneously determines the strain evolution. The ability to quantifiably characterize the nanoscale during high strain rate failure with ultrafast SAXS, complementing WAXS, represents a broadening in the range of science that can be performed with XFEL. It is shown that ultimate failure occurs via void nucleation, growth, and coalescence, and the data agree well with molecular dynamics simulations

    Speciation, Luminescence, and Alkaline Fluorescence Quenching of 4-(2-methylbutyl)aminodipicolinic acid (H2MEBADPA)

    Get PDF
    4-(2-Methylbutyl)aminodipicolinic acid (H2MEBADPA) has been synthesized and fully characterized in terms of aqueous phase protonation constants (pKa\u27s) and photophysical measurements. The pKa\u27s were determined by spectrophotometric titrations, utilizing a fully sealed titration system. Photophysical measurements consisted of room temperature fluorescence and frozen solution phosphorescence as well as quantum yield determinations at various pH, which showed that only fully deprotonated MEBADPA2– is appreciably emissive. The fluorescence of MEBADPA2– has been determined to be quenched by hydroxide and methoxide anions, most likely through base-catalyzed excited-state tautomerism or proton transfer. This quenching phenomenon has been quantitatively explored through steady-state and time-resolved fluorescence measurements. Utilizing the determined pKas and quenching constants, the fluorescent intensity of MEBADPA2– has been successfully modeled as a function of pH

    Emission spectroscopy of uranium(IV) compounds:a combined synthetic, spectroscopic and computational study

    No full text
    Emission spectroscopy has been used for the first time in a spectroscopic study of a family of uranium(IV) halide complexes in non-aqueous media. The room temperature electronic absorption spectra of the simple coordination compounds [Li(THF)(4)][UX5(THF)] (X = Cl, Br, I), [Et4N](2)[UCl6] and UCl4 in THF have been recorded and all transitions assigned with the aid of a comprehensive computational study using CASSCF and CASPT2 techniques. Excitation into a band of f-d and LMCT character followed by energy transfer into the 5f-orbital manifold accounts for the UV-visible radiative transitions observed in the emission spectra, which have been fully assigned as arising from transitions from the 5f(1)6d(1) electronic configuration to envelopes of states arising from the ground state 5f(2) configuration. The bonding in [Li(THF)(4)][UCl5(THF)] has been further elucidated utilising NBO and AIM calculations which describe the nature of the U-Cl bond as predominantly ionic with some dative covalent character and substantial overlap between the Cl 3p orbitals and 5f and 6d orbitals on uranium. These studies indicate that the emission spectral fingerprint of simple U(IV) compounds of O-h, C-4v and C-2v symmetry are similar and characteristic and may be used as a diagnostic tool to assign U(IV) species in solution and by inference, in the environment, in the presence of [UO2](2+)

    CCDC 907974: Experimental Crystal Structure Determination

    No full text
    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures

    Bacterial complications of respiratory tract viral illness: A comprehensive evaluation

    No full text
    Background. Respiratory tract infection is one of the most common reasons for hospitalization among adults, and recent evidence suggests that many of these illnesses are associated with viruses. Although bacterial infection is known to complicate viral infections, the frequency and impact of mixed viral-bacterial infections has not been well studied. Methods. Adults hospitalized with respiratory illness during 3 winters underwent comprehensive viral and bacterial testing. This assessment was augmented by measuring the serum level of procalcitonin (PCT) as a marker of bacterial infection. Mixed viral-bacterial infection was defined as a positive viral test result plus a positive bacterial assay result or a serum PCT level of ≥ 0.25 ng/mL on admission or day 2 of hospitalization. Results. Of 842 hospitalizations (771 patients) evaluated, 348 (41%) had evidence of viral infection. A total of 212 hospitalizations (61%) involved patients with viral infection alone. Of the remaining 136 hospitalizations (39%) involving viral infection, results of bacterial tests were positive in 64 (18%), and PCT analysis identified bacterial infection in an additional 72 (21%). Subjects hospitalized with mixed viral-bacterial infections were older and more commonly received a diagnosis of pneumonia. Over 90% of hospitalizations in both groups involved subjects who received antibiotics. Notably, 4 of 10 deaths among subjects hospitalized with viral infection alone were secondary to complications of Clostridium difficile colitis. Conclusions. Bacterial coinfection is associated with approximately 40% of viral respiratory tract infections requiring hospitalization. Patients with positive results of viral tests should be carefully evaluated for concomitant bacterial infection. Early empirical antibiotic therapy for patients with an unstable condition is appropriate but is not without risk
    corecore