5,171 research outputs found
Development of a productivity asessment toll for native spotted gum forest on private land based on estimates of forest growth on Crown land.
Reliable estimates of forest productivity are essential for improved predictions of timber yields for the private native spotted gum resource in southern Qld and northern NSW. The aim of this research was to estimate the potential productivity of native spotted gum forests on private land by making use of available inventory data collated from Qld and northern NSW for spotted gum forest on Crown land (i.e. state forests). We measured a range of site-related factors to determine their relative importance in predicting productivity of spotted gum forest. While measures such as stand height and height-diameter relationships are known to be useful predictors of productivity, we aimed to determine productivity for a site where this information was not available.
Through estimation of stand growth rates we developed a spotted gum productivity assessment tool (SPAT) for use by landholders and extension officers. We aimed to develop a tool to allow private landholders to see the benefits of maintaining their timber resource. This paper summarises the information used to develop the SPAT with a particular focus on forest growth relationships
Primary Health care as a platform for addressing racial discrimination to “leave no one behind” and reduce health inequities
The health inequities faced by populations experiencing racial discrimination, including indigenous peoples and people of African descent, Roma, and other ethnic minorities, are an issue of global concern. Health systems have an important role to play in tackling these health inequities. Health systems based on comprehensive Primary Health Care (PHC) are best placed to tackle health inequities because PHC encompasses a whole-of-society approach to health. PHC includes actions to address the wider social determinants of health, multisectoral policy and action, intercultural and integrated healthcare services, community empowerment, and a focus on addressing health inequities. PHC can also serve as a platform for introducing specific actions to tackle racial discrimination and can act to drive wider societal change for tackling racial and ethnic health inequities
Sea Surface Salinity: The Next Remote Sensing Challenge
A brief history of salinity remote sensing is presented. The role of sea surface salinity (SSS) in the far north Atlantic and the influence of salinity variations on upper ocean dynamics in the tropics are described. An assessment of the present state of the technology of the SSS satellite remote sensing is given
M-Dwarf Fast Rotators and the Detection of Relatively Young Multiple M-Star Systems
We have searched the Kepler light curves of ~3900 M-star targets for evidence
of periodicities that indicate, by means of the effects of starspots, rapid
stellar rotation. Several analysis techniques, including Fourier transforms,
inspection of folded light curves, 'sonograms', and phase tracking of
individual modulation cycles, were applied in order to distinguish the
periodicities due to rapid rotation from those due to stellar pulsations,
eclipsing binaries, or transiting planets. We find 178 Kepler M-star targets
with rotation periods, P_rot, of < 2 days, and 110 with P_rot < 1 day. Some 30
of the 178 systems exhibit two or more independent short periods within the
same Kepler photometric aperture, while several have three or more short
periods. Adaptive optics imaging and modeling of the Kepler pixel response
function for a subset of our sample support the conclusion that the targets
with multiple periods are highly likely to be relatively young physical binary,
triple, and even quadruple M star systems. We explore in detail the one object
with four incommensurate periods all less than 1.2 days, and show that two of
the periods arise from one of a close pair of stars, while the other two arise
from the second star, which itself is probably a visual binary. If most of
these M-star systems with multiple periods turn out to be bound M stars, this
could prove a valuable way of discovering young hierarchical M-star systems;
the same approach may also be applicable to G and K stars. The ~5% occurrence
rate of rapid rotation among the ~3900 M star targets is consistent with spin
evolution models that include an initial contraction phase followed by magnetic
braking, wherein a typical M star can spend several hundred Myr before spinning
down to periods longer than 2 days.Comment: 17 pages, 12 figures, 2 tables; accepted for publication in The
Astrophysical Journa
Inelastic collapse of a randomly forced particle
We consider a randomly forced particle moving in a finite region, which
rebounds inelastically with coefficient of restitution r on collision with the
boundaries. We show that there is a transition at a critical value of r,
r_c\equiv e^{-\pi/\sqrt{3}}, above which the dynamics is ergodic but beneath
which the particle undergoes inelastic collapse, coming to rest after an
infinite number of collisions in a finite time. The value of r_c is argued to
be independent of the size of the region or the presence of a viscous damping
term in the equation of motion.Comment: 4 pages, REVTEX, 2 EPS figures, uses multicol.sty and epsf.st
SU(N) chiral gauge theories on the lattice
We extend the construction of lattice chiral gauge theories based on
non-perturbative gauge fixing to the non-abelian case. A key ingredient is that
fermion doublers can be avoided at a novel type of critical point which is only
accessible through gauge fixing, as we have shown before in the abelian case.
The new ingredient allowing us to deal with the non-abelian case as well is the
use of equivariant gauge fixing, which handles Gribov copies correctly, and
avoids Neuberger's no-go theorem. We use this method in order to gauge fix the
non-abelian group (which we will take to be SU(N)) down to its maximal abelian
subgroup. Obtaining an undoubled, chiral fermion content requires us to
gauge-fix also the remaining abelian gauge symmetry. This modifies the
equivariant BRST identities, but their use in proving unitarity remains intact,
as we show in perturbation theory. On the lattice, equivariant BRST symmetry as
well as the abelian gauge invariance are broken, and a judiciously chosen
irrelevant term must be added to the lattice gauge-fixing action in order to
have access to the desired critical point in the phase diagram. We argue that
gauge invariance is restored in the continuum limit by adjusting a finite
number of counter terms. We emphasize that weak-coupling perturbation theory
applies at the critical point which defines the continuum limit of our lattice
chiral gauge theory.Comment: 39 pages, 3 figures, A number of clarifications adde
The mass-radius-luminosity-rotation relationship for M dwarf stars
NASA's future Transiting Exoplanet Survey Satellite (TESS) mission is expected to discover hundreds of terrestrial exoplanets orbiting around M dwarf stars, which will be nearby and amenable to detailed characterization. To accurately measure radii and equilibrium temperatures of these exoplanets, we need to know the host star properties, specifically mass, radius and luminosity, to equal accuracy. However, relationships for M dwarf stellar properties are poorly constrained, which leaves us unprepared to characterize exoplanets to be discovered by the TESS mission. The best way to determine relationships for M dwarf stars is to study mutually eclipsing binaries because the photometric and spectroscopic data empirically determine the physical parameters of the stars. We are conducting an on-going survey to measure infrared eclipses and individual spectra of carefully selected M dwarf eclipsing binary targets. We are using Mimir, a near-infrared wide-field imager, on the 72-inch Perkins Telescope near Flagstaff, Arizona, to determine the J, H, and K band magnitudes of the individual stars, and we are using Keck HIRES to measure the radial velocities of each component. Combining the observations, we determine the masses, radii and the semi-major axes of each component to an accuracy of 1%. We are also using measured parallaxes to determine the individual components' absolute infrared magnitudes and bolometric luminosities. The ultimate goal is to combine the measurements to determine the mass-radius-luminosity-rotation relationship for M dwarf stars. The relationship is critical for choosing the best TESS M dwarf exoplanets for detailed characterization.http://adsabs.harvard.edu/abs/2016AAS...22714221HPublished versio
Wetting of Curved Surfaces
As a first step towards a microscopic understanding of the effective
interaction between colloidal particles suspended in a solvent we study the
wetting behavior of one-component fluids at spheres and fibers. We describe
these phenomena within density functional theory which keeps track of the
microscopic interaction potentials governing these systems. In particular we
properly take into account the power-law decay of both the fluid-fluid
interaction potentials and the substrate potentials. The thicknesses of the
wetting films as a function of temperature and chemical potential as well as
the wetting phase diagrams are determined by minimizing an effective interface
potential which we obtain by applying a sharp-kink approximation to the density
functional. We compare our results with previous approaches to this problem.Comment: 54 pages, 17 figures, accepted for publication in Physica
A note on capillary model of developments for sandstone acidization
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23048/1/0000620.pd
- …