2,251 research outputs found
Academics' use of courseware materials: A survey
Learning technology has yet to enter the mainstream of higher education. The UFC-funded Teaching and Learning Technology (TLT) programme is attempting to change this by sponsoring projects concerned with courseware production and delivery. These efforts could be thwarted if the Not Invented Here syndrome prevents the use of technology-based teaching and learning materials outside the originating departments. To gain a clearer understanding of why academics have been rejecting much existing courseware, and to establish the extent of the Not Invented Here syndrome, we carried out a survey of 800 academics in eight UK universities. The survey proved to be exceptionally revealing
Magnetic inflation and stellar mass. IV. four low-mass kepler eclipsing binaries consistent with non-magnetic stellar evolutionary models
Low-mass eclipsing binaries (EBs) show systematically larger radii than model predictions for their mass, metallicity, and age. Prominent explanations for the inflation involve enhanced magnetic fields generated by rapid rotation of the star that inhibit convection and/or suppress flux from the star via starspots. However, derived
masses and radii for individual EB systems often disagree in the literature. In this paper, we continue to investigate low-mass EBs observed by NASA’s Kepler spacecraft, deriving stellar masses and radii using high-quality spacebased light curves and radial velocities from high-resolution infrared spectroscopy. We report masses and radii for three Kepler EBs, two of which agree with previously published masses and radii (KIC 11922782 and KIC 9821078). For the third EB (KIC 7605600), we report new masses and show the secondary component is likely fully convective (M2 = 0.17 ± 0.01M☉ and = - ☉ + R2 0.199 0.002R 0.001 ). Combined with KIC 10935310 from Han et al., we find that the masses and radii for four low-mass Kepler EBs are consistent with modern stellar evolutionary
models for M dwarf stars and do not require inhibited convection by magnetic fields to account for the stellar radii.Published versio
Discerning the Form of the Dense Core Mass Function
We investigate the ability to discern between lognormal and powerlaw forms
for the observed mass function of dense cores in star forming regions. After
testing our fitting, goodness-of-fit, and model selection procedures on
simulated data, we apply our analysis to 14 datasets from the literature.
Whether the core mass function has a powerlaw tail or whether it follows a pure
lognormal form cannot be distinguished from current data. From our simulations
it is estimated that datasets from uniform surveys containing more than
approximately 500 cores with a completeness limit below the peak of the mass
distribution are needed to definitively discern between these two functional
forms. We also conclude that the width of the core mass function may be more
reliably estimated than the powerlaw index of the high mass tail and that the
width may also be a more useful parameter in comparing with the stellar initial
mass function to deduce the statistical evolution of dense cores into stars.Comment: 6 pages, 2 figures, accepted for publication in PAS
Magnetic inflation and stellar mass. III. revised parameters for the component stars of NSVS 07394765
We perform a new analysis of the M-dwarf–M-dwarf eclipsing binary system NSVS 07394765 in order to investigate the reported hyper-inflated radius of one of the component stars. Our analysis is based on archival photometry from the Wide Angle Search for Planets, new photometry from the 32 cm Command Module
Observatory telescope in Arizona and the 70 cm telescope at Thacher Observatory in California, and new high-resolution infrared spectra obtained with the Immersion Grating Infrared Spectrograph on the Discovery Channel Telescope. The masses and radii we measure for each component star disagree with previously reported measurements. We show that both stars are early M-type main-sequence stars without evidence for youth or hyper-inflation ( = - ☉ M M + 1 0.661 0.036 0.008 , = - ☉ M M + 2 0.608 0.028 0.003 , = - ☉ + R1 0.599 0.019 R 0.032 , = - ☉ + R2 0.625 0.027 R 0.012 ), and
we update the orbital period and eclipse ephemerides for the system. We suggest that the likely cause of the initial hyper-inflated result is the use of moderate-resolution spectroscopy for precise radial velocity measurements.Published versio
Factors affecting phage D29 infection: a tool to investigate different growth states of mycobacteria
Bacteriophages D29 and TM4 are able to infect a wide range of mycobacteria, including pathogenic and non pathogenic species. Successful phage infection of both fast- and slow-growing mycobacteria can be rapidly detected using the phage amplification assay. Using this method, the effect of oxygen limitation during culture of mycobacteria on the success of phage infection was studied. Both D29 and TM4 were able to infect cultures of M. smegmatis and Mycobacterium avium subspecies paratuberculosis (MAP) grown in liquid with aeration. However when cultures were grown under oxygen limiting conditions, only TM4 could productively infect the cells. Cell attachment assays showed that D29 could bind to the cells surface but did not complete the lytic cycle. The ability of D29 to productively infect the cells was rapidly recovered (within 1 day) when the cultures were returned to an aerobic environment and this recovery required de novo RNA synthesis. These results indicated that under oxygen limiting conditions the cells are entering a growth state which inhibits phage D29 replication, and this change in host cell biology which can be detected by using both phage D29 and TM4 in the phage amplification assay
The Masses of Transition Circumstellar Disks: Observational Support for Photoevaporation Models
We report deep Sub-Millimeter Array observations of 26 pre-main-sequence
(PMS) stars with evolved inner disks. These observations measure the mass of
the outer disk (r ~20-100 AU) across every stage of the dissipation of the
inner disk (r < 10 AU) as determined by the IR spectral energy distributions
(SEDs). We find that only targets with high mid-IR excesses are detected and
have disk masses in the 1-5 M_Jup range, while most of our objects remain
undetected to sensitivity levels of M_DISK ~0.2-1.5 M_Jup. To put these results
in a more general context, we collected publicly available data to construct
the optical to millimeter wavelength SEDs of over 120 additional PMS stars. We
find that the near-IR and mid-IR emission remain optically thick in objects
whose disk masses span 2 orders of magnitude (~0.5-50 M_Jup). Taken together,
these results imply that, in general, inner disks start to dissipate only after
the outer disk has been significantly depleted of mass. This provides strong
support for photoevaporation being one of the dominant processes driving disk
evolution.Comment: Accepted for publication by ApJL, 4 pages and 3 figure
Nature Of Transition Circumstellar Disks. I. The Ophiuchus Molecular Cloud
We have obtained millimeter-wavelength photometry, high-resolution optical spectroscopy, and adaptive optics near-infrared imaging for a sample of 26 Spitzer-selected transition circumstellar disks. All of our targets are located in the Ophiuchus molecular cloud (d similar to 125 pc) and have spectral energy distributions (SEDs) suggesting the presence of inner opacity holes. We use these ground-based data to estimate the disk mass, multiplicity, and accretion rate for each object in our sample in order to investigate the mechanisms potentially responsible for their inner holes. We find that transition disks are a heterogeneous group of objects, with disk masses ranging from <0.6 to 40 M(JUP) and accretion rates ranging from <10(-11) to 10(-7) M(circle dot) yr(-1), but most tend to have much lower masses and accretion rates than "full disks" (i.e., disks without opacity holes). Eight of our targets have stellar companions: six of them are binaries and the other two are triple systems. In four cases, the stellar companions are close enough to suspect they are responsible for the inferred inner holes. We find that nine of our 26 targets have low disk mass (<2.5 M(JUP)) and negligible accretion (<10(-11) M(circle dot) yr(-1)), and are thus consistent with photoevaporating (or photoevaporated) disks. Four of these nine non-accreting objects have fractional disk luminosities <10(-3) and could already be in a debris disk stage. Seventeen of our transition disks are accreting. Thirteen of these accreting objects are consistent with grain growth. The remaining four accreting objects have SEDs suggesting the presence of sharp inner holes, and thus are excellent candidates for harboring giant planets.NASA 1224608, 1230782, 1230779, 1407FONDECYT 1061199Basal CATA PFB 06/09ALMA FUND 31070021ALMA-Conicyt FUND 31060010National Science Foundation AST0-808144Spitzer Space Telescope Legacy Science ProgramAstronom
A Pre-Protostellar Core in L1551. II. State of Dynamical and Chemical Evolution
Both analytic and numerical radiative transfer models applied to high
spectral resolution CS and N2H+ data give insight into the evolutionary state
of L1551 MC. This recently discovered pre-protostellar core in L1551 appears to
be in the early stages of dynamical evolution. Line-of-sight infall velocities
of >0.1km/s are needed in the outer regions of L1551 MC to adequately fit the
data. This translates to an accretion rate of ~ 1e-6 Msun/yr, uncertain to
within a factor of 5 owing to unknown geometry. The observed dynamics are not
due to spherically symmetric gravitational collapse and are not consistent with
the standard model of low-mass star formation. The widespread, fairly uniform
CS line asymmetries are more consistent with planar infall. There is modest
evidence for chemical depletion in the radial profiles of CS and C18O
suggesting that L1551 MC is also chemically young. The models are not very
sensitive to chemical evolution. L1551 MC lies within a quiescent region of
L1551 and is evidence for continued star formation in this evolved cloud.Comment: 27 pages, 7 figures, ApJ accepte
Miniature Exoplanet Radial Velocity Array I: design, commissioning, and early photometric results
The Miniature Exoplanet Radial Velocity Array (MINERVA) is a U.S.-based observational facility dedicated to the discovery and characterization of exoplanets around a nearby sample of bright stars. MINERVA employs a robotic array of four 0.7-m telescopes outfitted for both high-resolution spectroscopy and photometry, and is designed for completely autonomous operation. The primary science program is a dedicated radial velocity survey and the secondary science objective is to obtain high-precision transit light curves. The modular design of the facility and the flexibility of our hardware allows for both science programs to be pursued simultaneously, while the robotic control software provides a robust and efficient means to carry out nightly observations. We describe the design of MINERVA, including major hardware components, software, and science goals. The telescopes and photometry cameras are characterized at our test facility on the Caltech campus in Pasadena, California, and their on-sky performance is validated. The design and simulated performance of the spectrograph is briefly discussed as we await its completion. New observations from our test facility demonstrate sub-mmag photometric precision of one of our radial velocity survey targets, and we present new transit observations and fits of WASP-52b—a known hot-Jupiter with an inflated radius and misaligned orbit. The process of relocating the MINERVA hardware to its final destination at the Fred Lawrence Whipple Observatory in southern Arizona has begun, and science operations are expected to commence in 2015
- …
