159 research outputs found

    Regional microbial signatures positively correlate with differential wine phenotypes: evidence for a microbial aspect to terroir

    Get PDF
    Many crops display differential geographic phenotypes and sensorial signatures, encapsulated by the concept of terroir. The drivers behind these differences remain elusive, and the potential contribution of microbes has been ignored until recently. Significant genetic differentiation between microbial communities and populations from different geographic locations has been demonstrated, but crucially it has not been shown whether this correlates with differential agricultural phenotypes or not. Using wine as a model system, we utilize the regionally genetically differentiated population of Saccharomyces cerevisiae in New Zealand and objectively demonstrate that these populations differentially affect wine phenotype, which is driven by a complex mix of chemicals. These findings reveal the importance of microbial populations for the regional identity of wine, and potentially extend to other important agricultural commodities. Moreover, this suggests that long-term implementation of methods maintaining differential biodiversity may have tangible economic imperatives as well as being desirable in terms of employing agricultural practices that increase responsible environmental stewardship

    Quantifying variation in the ability of yeasts to attract Drosophila melanogaster

    Get PDF
    Yeasts that invade and colonise fruit significantly enhance the volatile chemical diversity of this ecosystem. These modified bouquets are thought to be more attractive to Drosophila flies than the fruit alone, but the variance of attraction in natural yeast populations is uncharacterised. Here we investigate how a range of yeast isolates affect the attraction of female D. melanogaster to fruit in a simple two choice assay comparing yeast to sterile fruit. Of the 43 yeast isolates examined, 33 were attractive and seven repellent to the flies. The results of isolate-versus-isolate comparisons provided the same relative rankings. Attractiveness varied significantly by yeast, with the strongly fermenting Saccharomyces species generally being more attractive than the mostly respiring non-Saccharomyces species (P = 0.0035). Overall the habitat (fruit or other) from which the isolates were directly sampled did not explain attraction (P = 0.2352). However, yeasts isolated from fruit associated niches were more attractive than those from non-fruit associated niches (P = 0.0188) regardless of taxonomic positioning. These data suggest that while attractiveness is primarily correlated with phylogenetic status, the ability to attract Drosophila is a labile trait among yeasts that is potentially associated with those inhabiting fruit ecosystems. Preliminary analysis of the volatiles emitted by four yeast isolates in grape juice show the presence/absence of ethanol and acetic acid were not likely explanations for the observed variation in attraction. These data demonstrate variation among yeasts for their ability to attract Drosophila in a pattern that is consistent with the hypothesis that certain yeasts are manipulating fruit odours to mediate interactions with their Drosophila dispersal agent. © 2013 Palanca et al

    Creating a regular array of metal-complexing molecules on an insulator surface at room temperature

    Get PDF
    Controlling self-assembled nanostructures on bulk insulators at room temperature is crucial towards the fabrication of future molecular devices, e.g., in the field of nanoelectronics, catalysis and sensor applications. However, at temperatures realistic for operation anchoring individual molecules on electrically insulating support surfaces remains a big challenge. Here, we present the formation of an ordered array of single anchored molecules, dimolybdenum tetraacetate, on the (10.4) plane of calcite (CaCO3). Based on our combined study of atomic force microscopy measurements and density functional theory calculations, we show that the molecules neither diffuse nor rotate at room temperature. The strong anchoring is explained by electrostatic interaction of an ideally size-matched molecule. Especially at high coverage, a hard-sphere repulsion of the molecules and the confinement at the calcite surface drives the molecules to form locally ordered arrays, which is conceptually different from attractive linkers as used in metal-organic frameworks. Our work demonstrates that tailoring the molecule-surface interaction opens up the possibility for anchoring individual metal complexing molecules into ordered arrays

    Modulation of volatile sulfur compounds by wine yeast

    No full text
    Sulfur compounds in wine can be a 'double-edged sword'. On the one hand, certain sulfur-containing volatile compounds such as hydrogen sulfide, imparting a rotten egg-like aroma, can have a negative impact on the perceived quality of the wine, and on the other hand, some sulfur compounds such as 3-mercaptohexanol, imparting fruitiness, can have a positive impact on wine flavor and aroma. Furthermore, these compounds can become less or more attractive or repulsive depending on their absolute and relative concentrations. This presents an interesting challenge to the winemaker to modulate the concentrations of these quality-determining compounds in wine in accordance with consumer preferences. The wine yeast Saccharomyces cerevisiae plays a central role in the production of volatile sulfur compounds. Through the sulfate reduction sequence pathway, the HS- is formed, which can lead to the formation of hydrogen sulfide and various mercaptan compounds. Therefore, limiting the formation of the HS- ion is an important target in metabolic engineering of wine yeast. The wine yeast is also responsible for the transformation of non-volatile sulfur precursors, present in the grape, to volatile, flavor-active thiol compounds. In particular, 4-mercapto-4- methylpentan-2-one, 3-mercaptohexanol, and 3-mercaptohexyl acetate are the most important volatile thiols adding fruitiness to wine. This paper briefly reviews the metabolic processes involved in the production of important volatile sulfur compounds and the latest strategies in the pursuit of developing wine yeast strains as tools to adjust wine aroma to market specifications.7 page(s

    Olfaction and taste : human perception, physiology and genetics

    No full text
    Drinking wine is a manifestly sensuous experience. Wine stimulates most of our senses; particularly smell (olfaction) and taste, and, to a lesser extent, sight and touch. These sensory inputs interact with the limbic system in our brain which is associated with emotions and memory. Agreeable smells can thus evoke feelings of enjoyment and nostalgia. But how are tastants and aromas detected? Over the past few years a great deal has been learnt about how small tastant and odorant molecules are detected by specific protein receptors located in our mouth and in nasal cavities, respectively. Indeed, we have a vast array of olfactory receptors encoded by a group of genes that represent a significant part of the human genome. Interestingly, many more aroma compounds can be detected and discriminated than can be accounted for by the number of olfactory receptors that are encoded by our genes. Such disparity implies a level of complexity in this system which is not yet fully understood. Sophistication in olfaction is something that winemakers (and drinkers!) have long appreciated, and now scientists are beginning to unravel some of the underlying mysteries. Discovering why some individuals are more receptive to different tastes and smells than others will help wine producers understand variation in consumer preferences between different parts of the world, and possibly capture new opportunities in a changing global marketplace. Given such prospects, this present review offers a timely summary of some key developments in our understanding of odorant and tastant detection. We also consider how genetic components in human olfaction might be utilised to develop a 'biosensor' for aroma detection and discrimination.5 page(s

    Regulation of respiratory growth by Ras: The glyoxylate cycle mutant, cit2Δ, is suppressed by RAS2

    Get PDF
    In Saccharomyces cerevisiae the Ras/cAMP/PKA signalling pathway controls multiple metabolic pathways, and alterations in the intracellular concentrations of cAMP through modification of signalling pathway factors can be lethal or result in severe growth defects. In this work, the important role of Ras2p in metabolic regulation during growth on the non-fermentable carbon source glycerol is further investigated. The data show that the overexpression of RAS2 suppresses the growth defect of the glyoxylate cycle citrate synthase mutant, cit2Δ. The overexpression results in enhanced proliferation and biomass yield when cells are grown on glycerol as sole carbon source, and increases citrate synthase activity and intracellular citrate concentration. Interestingly, the suppression of cit2Δ and the enhanced proliferation and biomass yield are only observed when RAS2 is overexpressed and not in strains containing the constitutively active allele RAS2 val19. However, both RAS2 and RAS2 val19upregulated citrate synthase activity. We propose that the RAS2 overexpression results in a combination of general upregulation of respiratory growth capacity and an increase in mitochondrial citrate/ citrate synthases, which together, complement the metabolic requirements of the cit2Δ mutant. The data therefore provide new evidence for the role of Ras2p as a powerful modulator of metabolism during growth on a non-fermentable carbon source. © Springer-Verlag 2006.Articl

    Ras regulates the carnitine shuttle

    No full text
    1 page(s
    corecore