9 research outputs found

    Muscle-specific deletion of SOCS3 increases the early inflammatory response but does not affect regeneration after myotoxic injury

    Get PDF
    Myosin heavy chain gene expression and muscle fiber oxidative capacity in muscles from uninjured control and SOCS3 MKO mice. qRT-PCR using primers to detect MyHCIIb (A), MyHCIIx (B), MyHCI (C), and MyHCIIa (D) was performed on RNA extracted from snap frozen muscles following dissection. Data are expressed as mean ± SEM and compared with an unpaired two-tailed Student’s t test. n = 8 mice/genotype. (E) Representative succinate dehydrogenase (SDH)-reacted TA muscle sections from uninjured muscles of 12-week-old control and SOCS3 MKO mice. Quantification of SDH intensity was determined by analysis of SDH reacted TA muscle sections. Data are expressed as mean ± SEM and compared with an unpaired two-tailed Student’s t test. n = 5 mice/genotype. Scale bar = 100 μm. (PDF 145 kb

    Ageing prolongs inflammatory marker expression in regenerating rat skeletal muscles after injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some of the most serious consequences of normal ageing relate to its effects on skeletal muscle, particularly significant wasting and associated weakness, termed "sarcopenia". The underlying mechanisms of sarcopenia have yet to be elucidated completely but an altered muscle inflammatory response after injury is a likely contributing factor. In this study we investigated age-related changes in the expression of numerous inflammatory markers linked to successful muscle regeneration.</p> <p>Methods</p> <p>Right extensor digitorum longus (EDL) muscles from young (3 month), adult (12 month) and old (24 month) male F344 rats were injected with bupivacaine hydrochloride to cause complete muscle fibre degeneration, then excised 12, 24, 36, and 72 hours later (n = 5/age group/time point). We used qRT-PCR to quantify the mRNA expression levels of the inflammatory markers TNFα, IFNγ, IL1, IL18, IL6, and CD18 as well as regenerative markers MyoD and myogenin.</p> <p>Results</p> <p>Inflammatory markers were all increased significantly in all age groups after myotoxic injury. There was a trend for expression of inflammatory markers to be higher in uninjured muscles of old rats, especially at 72 hours post injury where the expression levels of several markers was significantly higher in old compared with young and adult rats. There was also a decrease in the expression of regenerative markers in old rats at 72 hours post injury.</p> <p>Conclusion</p> <p>Our findings identify a prolonged inflammatory signature in injured muscles from old compared with young and adult rats together with a blunted expression of key markers of regeneration in muscles of old rats. Importantly, our findings identify potential targets for future therapeutic strategies for improving the regenerative capacity of skeletal muscle during ageing.</p

    Role for Plant-Derived Antioxidants in Attenuating Cancer Cachexia

    No full text
    Cancer cachexia is the progressive muscle wasting and weakness experienced by many cancer patients. It can compromise the response to gold standard cancer therapies, impair functional capacity and reduce overall quality of life. Cancer cachexia accounts for nearly one-third of all cancer-related deaths and has no effective treatment. The pathogenesis of cancer cachexia and its progression is multifactorial and includes increased oxidative stress derived from both the tumor and the host immune response. Antioxidants have therapeutic potential to attenuate cancer-related muscle loss, with polyphenols, a group of plant-derived antioxidants, being the most widely investigated. This review describes the potential of these plant-derived antioxidants for treating cancer cachexia

    Investigating the Potential for Sulforaphane to Attenuate Gastrointestinal Dysfunction in mdx Dystrophic Mice

    Get PDF
    Gastrointestinal (GI) dysfunction is an important, yet understudied condition associated with Duchenne muscular dystrophy (DMD), with patients reporting bloating, diarrhea, and general discomfort, contributing to a reduced quality of life. In the mdx mouse, the most commonly used mouse model of DMD, studies have confirmed GI dysfunction (reported as altered contractility and GI transit through the small and large intestine), associated with increased local and systemic inflammation. Sulforaphane (SFN) is a natural isothiocyanate with anti-inflammatory and anti-oxidative properties via its activation of Nrf2 signalling that has been shown to improve aspects of the skeletal muscle pathology in dystrophic mice. Whether SFN can similarly improve GI function in muscular dystrophy was unknown. Video imaging and spatiotemporal mapping to assess gastrointestinal contractions in isolated colon preparations from mdx and C57BL/10 mice revealed that SFN reduced contraction frequency when administered ex vivo, demonstrating its therapeutic potential to improve GI function in DMD. To confirm this in vivo, four-week-old male C57BL/10 and mdx mice received vehicle (2% DMSO/corn oil) or SFN (2 mg/kg in 2% DMSO/corn oil) via daily oral gavage five days/week for 4 weeks. SFN administration reduced fibrosis in the diaphragm of mdx mice but did not affect other pathological markers. Gene and protein analysis revealed no change in Nrf2 protein expression or activation of Nrf2 signalling after SFN administration and oral SFN supplementation did not improve GI function in mdx mice. Although ex vivo studies demonstrate SFN&rsquo;s therapeutic potential for reducing colon contractions, in vivo studies should investigate higher doses and/or alternate routes of administration to confirm SFN&rsquo;s potential to improve GI function in DMD

    Additional file 1: Figure S1. of Muscle-specific deletion of SOCS3 increases the early inflammatory response but does not affect regeneration after myotoxic injury

    No full text
    Genomic PCR to confirm correct Socs3 deletion. (A) Schematic of Socs3 gene demonstrating floxed regions (LoxP) flanking exon 2 and location of the sequencing primers both prior to and post-Cre excision. (B) Genomic PCR using the primers shown in (A) confirmed the presence of the 288 bp deleted DNA band in muscle but not liver of SOCS3fl/fl MCK-Cre positive and not SOCS3fl/fl MCK-Cre-negative mice. (C) qRT-PCR using primers to detect Socs3 gene expression in RNA extracted from muscle fibers isolated from freeze-dried gastrocnemius muscles of saline or LPS-injected control and SOCS3 MKO mice. Data are expressed as mean ± SEM and compared with a two-way ANOVA and Fisher’s LSD post hoc multiple comparisons test to determine the effect of genotype and LPS injection (n = 2 mice/genotype). ***P < 0.001 compared to uninjured muscle from control mice. (PDF 115 kb
    corecore