2,312 research outputs found
Climatology of Short-Period Gravity Waves Observed over Northern Australia during the Darwin Area Wave Experiment (DAWEX) and their Dominant Source Regions
The Darwin Area Wave Experiment (DAWEX) was designed to investigate the generation and propagation of gravity waves from intense regions of localized convection that occur regularly over northern Australia (in the vicinity of Darwin) during the premonsoon period. This multinational program was conducted during the austral spring 2001 using a range of coordinated optical, radar, and in situ balloon measurements. As part of this program, all-sky image observations of short-period gravity wave events in the near infrared OH nightglow emission (altitude ~87 km) were made from two well-separated sites in northern Australia: Wyndham (15.5ºS, 128.1ºE) and Katherine (14.5ºS, 132.3ºE), over a 10-day period during November 2001. A total of 25 extensive wave events were observed during this period, from which the dominant horizontal wave characteristics were determined to be: wavelength 25–35 km and observed phase speed 27–75 m/s, yielding observed periods from 7 to 14 min, consistent with previous measurements at other low-latitude sites. A key finding of this study was a marked anisotropy in the wave propagation headings, with over 3/4 of the events exhibiting a strong southward component of motion and a clear preference for wave progression over the azimuthal range SE to SSW. Although this range encompasses gravity waves originating locally from the Darwin area, the majority of the wave events exhibited propagation headings consistent with more distant sources located to the north and northwest of Australia. Assuming deep convection was the dominant mechanism for the waves, the strong asymmetry in their velocity distribution appears to result from a combination of nonuniformity in the geographic occurrence of thunderstorms coupled together with significant wind filtering effects at the source altitude and within the middle atmosphere. These results are consistent with long-range, short-period wave propagation (most probably in the form of ducted waves) possibly from intense convective regions located ~1000 km to the north over the Indonesian Island chain
Kirchhoff's Loop Law and the maximum entropy production principle
In contrast to the standard derivation of Kirchhoff's loop law, which invokes
electric potential, we show, for the linear planar electric network in a
stationary state at the fixed temperature,that loop law can be derived from the
maximum entropy production principle. This means that the currents in network
branches are distributed in such a way as to achieve the state of maximum
entropy production.Comment: revtex4, 5 pages, 2 figure
Dynamic and Chemical Aspects of the Mesospheric Na ‘Wall’ Event on 9 October 1993 During the ALOHA Campaign
On October 9, 1993, observations were made from the National Center for Atmospheric Research Electra aircraft during a flight from Maui, Hawaii, toward a low-pressure system NW of the island, a flight of 7 hours in total. The leading edge (wall) of a bright airglow layer was observed 900 km NW of Maui at 0815 UT, which was traveling at 75 m s−1 toward the SE, reaching Haleakala, Maui, about 3.25 hours later [see Swenson and Espy, 1995]. An intriguing feature associated with the event was the large increase in the mesospheric Na column density at the wall (∼180%). The enhancement was distributed over a broad region of altitude and was accompanied by significant perturbations in the Meinel (OH) and Na D line airglow emission intensities, as well as the temperature. This paper describes an investigation of the combined measurements from the aircraft and at Haleakala, including an analysis of the event using a gravity wave dynamic model. The modeled atmospheric variations associated with the leading edge of the “wall” wave are then applied to models of the neutral and ionic chemistry of sodium in order to establish whether the enhancement was caused by the release of atomic Na from a local reservoir species, as opposed to redistribution by horizontal convection. The most likely explanation for the Na release was the neutralization of Na+ ions in a sporadic E layer that was first transported downward by a large amplitude (≈10%) atmospheric gravity wave and then vertically mixed as the wave pushed the atmosphere into a super adiabatic state with associated convective instabilities and overturning
A versatile and compact capacitive dilatometer
We describe the design, construction, calibration, and operation of a
relatively simple differential capacitive dilatometer suitable for measurements
of thermal expansion and magnetostriction from 300 K to below 1 K with a
low-temperature resolution of about 0.05 angstroms. The design is characterized
by an open architecture permitting measurements on small samples with a variety
of shapes. Dilatometers of this design have operated successfully with a
commercial physical property measurement system, with several types of
cryogenic refrigeration systems, in vacuum, in helium exchange gas, and while
immersed in liquid helium (magnetostriction only) to temperatures of 30 mK and
in magnetic fields to 45 T.Comment: 8 pages, incorporating 6 figures, submitted to Rev. Sci. Instru
Seasonal variation in the correlation of airglow temperature and emission rate
The hydroxyl (OH) rotational temperature and band emission rate have been derived using year-round, ground-based measurements of the infrared OH nightglow from Sweden from 1991 to 2002. Recent work has suggested that, during the winter, all scales of dynamical variations of radiance and temperature arise from vertical motions, implying that the effective source concentrations of atomic oxygen are constant. The present data show correlations between temperature and radiance both during winter and summer that are consistent with those observed in that previous work. However, during the transition to summer there is a rapid decrease in the temperature and its variation that is not reflected in the band radiance, suggesting that only the shorter-scale variations are accompanied by significant vertical motion. This indicates that the shorter-scale dynamical variations occur against an independent, seasonally changing background temperature profile in a way that is consistent with that predicted by gravity-wave models
VLT/NACO adaptive optics imaging of the TY CrA system - A fourth stellar component candidate detected
We report the detection of a possible subsolar mass companion to the triple
young system TY CrA using the NACO instrument at the VLT UT4 during its
commissioning. Assuming for TY CrA a distance similar to that of the close
binary system HD 176386, the photometric spectral type of this fourth stellar
component candidate is consistent with an ~M4 star. We discuss the dynamical
stability of this possible quadruple system as well as the possible location of
dusty particles inside or outside the system.Comment: 4 pages, 2 figures postscrip
- …