49 research outputs found
Low-mass pre--main-sequence stars in the Magellanic Clouds
[Abridged] The stellar Initial Mass Function (IMF) suggests that sub-solar
stars form in very large numbers. Most attractive places for catching low-mass
star formation in the act are young stellar clusters and associations, still
(half-)embedded in star-forming regions. The low-mass stars in such regions are
still in their pre--main-sequence (PMS) evolutionary phase. The peculiar nature
of these objects and the contamination of their samples by the evolved
populations of the Galactic disk impose demanding observational techniques for
the detection of complete numbers of PMS stars in the Milky Way. The Magellanic
Clouds, the companion galaxies to our own, demonstrate an exceptional star
formation activity. The low extinction and stellar field contamination in
star-forming regions of these galaxies imply a more efficient detection of
low-mass PMS stars than in the Milky Way, but their distance from us make the
application of special detection techniques unfeasible. Nonetheless, imaging
with the Hubble Space Telescope yield the discovery of solar and sub-solar PMS
stars in the Magellanic Clouds from photometry alone. Unprecedented numbers of
such objects are identified as the low-mass stellar content of their
star-forming regions, changing completely our picture of young stellar systems
outside the Milky Way, and extending the extragalactic stellar IMF below the
persisting threshold of a few solar masses. This review presents the recent
developments in the investigation of PMS stars in the Magellanic Clouds, with
special focus on the limitations by single-epoch photometry that can only be
circumvented by the detailed study of the observable behavior of these stars in
the color-magnitude diagram. The achieved characterization of the low-mass PMS
stars in the Magellanic Clouds allowed thus a more comprehensive understanding
of the star formation process in our neighboring galaxies.Comment: Review paper, 26 pages (in LaTeX style for Springer journals), 4
figures. Accepted for publication in Space Science Review
Plant functional and taxonomic diversity in European grasslands along climatic gradients
Aim: European grassland communities are highly diverse, but patterns and drivers of their continental-scale diversity remain elusive. This study analyses taxonomic and functional richness in European grasslands along continental-scale temperature and precipitation gradients.
Location: Europe.
Methods: We quantified functional and taxonomic richness of 55,748 vegetation plots. Six plant traits, related to resource acquisition and conservation, were analysed to describe plant community functional composition. Using a null-model approach we derived functional richness effect sizes that indicate higher or lower diversity than expected given the taxonomic richness. We assessed the variation in absolute functional and taxonomic richness and in functional richness effect sizes along gradients of minimum temperature, temperature range, annual precipitation, and precipitation seasonality using a multiple general additive modelling approach.
Results: Functional and taxonomic richness was high at intermediate minimum temperatures and wide temperature ranges. Functional and taxonomic richness was low in correspondence with low minimum temperatures or narrow temperature ranges. Functional richness increased and taxonomic richness decreased at higher minimum temperatures and wide annual temperature ranges. Both functional and taxonomic richness decreased with increasing precipitation seasonality and showed a small increase at intermediate annual precipitation. Overall, effect sizes of functional richness were small. However, effect sizes indicated trait divergence at extremely low minimum temperatures and at low annual precipitation with extreme precipitation seasonality.
Conclusions: Functional and taxonomic richness of European grassland communities vary considerably over temperature and precipitation gradients. Overall, they follow similar patterns over the climate gradients, except at high minimum temperatures and wide temperature ranges, where functional richness increases and taxonomic richness decreases. This contrasting pattern may trigger new ideas for studies that target specific hypotheses focused on community assembly processes. And though effect sizes were small, they indicate that it may be important to consider climate seasonality in plant diversity studies
Hypoxic Pulmonary Vasoconstriction in Humans:Tale or Myth
Hypoxic Pulmonary vasoconstriction (HPV) describes the physiological adaptive process of lungs to preserves systemic oxygenation. It has clinical implications in the development of pulmonary hypertension which impacts on outcomes of patients undergoing cardiothoracic surgery. This review examines both acute and chronic hypoxic vasoconstriction focusing on the distinct clinical implications and highlights the role of calcium and mitochondria in acute versus the role of reactive oxygen species and Rho GTPases in chronic HPV. Furthermore it identifies gaps of knowledge and need for further research in humans to clearly define this phenomenon and the underlying mechanism