107 research outputs found

    Pharmacokinetic profile of irinotecan in patients with chronic kidney disease:Two cases and literature review

    Get PDF
    Aims: There are limited pharmacokinetic data on the use of irinotecan in patients with reduced glomerular filtration rate (GFR) and no haemodialysis. In this case report, we present 2 cases and review the current literature. Methods: The dose of irinotecan in both patients was reduced pre-emptively due to reduced GFR. The first patient had her irinotecan dose reduced to 50%, but was nevertheless admitted to hospital because of irinotecan-induced toxicity, including gastrointestinal toxicity and neutropenic fever. The dose was reduced further to 40% for the second cycle; however, the patient was again admitted to the hospital, and irinotecan was stopped indefinitely. The second patient also had his irinotecan dose reduced to 50% and was admitted to the emergency department for gastrointestinal toxicity after the first cycle. However, irinotecan could be administered in the same dose in later cycles. Results: The area under the curve to infinity of irinotecan and SN-38 in the first patient were comparable to those of an individual receiving 100% dose intensity. The area under the curve to infinity of irinotecan and SN-38 in patient 2 in both cycles were slightly less than reference values. Furthermore, clearance values of irinotecan and SN-38 in our patients were comparable to those without renal impairment. Conclusion: Our case report suggests that reduced GFR may not significantly affect the clearance of irinotecan and SN-38, but can still result in clinical toxicity. Reduced initial dosing seems indicated in this patient population. Further research is needed to fully understand the relationship between reduced GFR, pharmacokinetics, and toxicity of irinotecan and SN-38.</p

    Pharmacogenomic testing in paediatrics: Clinical implementation strategies

    Get PDF
    Pharmacogenomics (PGx) relates to the study of genetic factors determining variability in drug response. Implementing PGx testing in paediatric patients can enhance drug safety, helping to improve drug efficacy or reduce the risk of toxicity. Despite its clinical relevance, the implementation of PGx testing in paediatric practice to date has been variable and limited. As with most paediatric pharmacological studies, there are well-recognised barriers to obtaining high-quality PGx evidence, particularly when patient numbers may be small, and off-label or unlicensed prescribing remains widespread. Furthermore, trials enrolling small numbers of children can rarely, in isolation, provide sufficient PGx evidence to change clinical practice, so extrapolation from larger PGx studies in adult patients, where scientifically sound, is essential. This review paper discusses the relevance of PGx to paediatrics and considers implementation strategies from a child health perspective. Examples are provided from Canada, the Netherlands and the UK, with consideration of the different healthcare systems and their distinct approaches to implementation, followed by future recommendations based on these cumulative experiences. Improving the evidence base demonstrating the clinical utility and cost-effectiveness of paediatric PGx testing will be critical to drive implementation forwards. International, interdisciplinary collaborations will enhance paediatric data collation, interpretation and evidence curation, while also supporting dedicated paediatric PGx educational initiatives. PGx consortia and paediatric clinical research networks will continue to play a central role in the streamlined development of effective PGx implementation strategies to help optimise paediatric pharmacotherapy

    Physiologically based pharmacokinetic modeling of tacrolimus for food-drug and CYP3A drug-drug-gene interaction predictions

    Get PDF
    The immunosuppressant and narrow therapeutic index drug tacrolimus is metabolized mainly via cytochrome P450 (CYP) 3A4 and CYP3A5. For its pharmacokinetics (PK), high inter- and intra-individual variability can be observed. Underlying causes include the effect of food intake on tacrolimus absorption as well as genetic polymorphism in the CYP3A5 gene. Furthermore, tacrolimus is highly susceptible to drug–drug interactions, acting as a victim drug when coadministered with CYP3A perpetrators. This work describes the development of a whole-body physiologically based pharmacokinetic model for tacrolimus as well as its application for investigation and prediction of (i) the impact of food intake on tacrolimus PK (food–drug interactions [FDIs]) and (ii) drug–drug(−gene) interactions (DD[G]Is) involving the CYP3A perpetrator drugs voriconazole, itraconazole, and rifampicin. The model was built in PK-Sim¼ Version 10 using a total of 37 whole blood concentration–time profiles of tacrolimus (training and test) compiled from 911 healthy individuals covering the administration of tacrolimus as intravenous infusions as well as immediate-release and extended-release capsules. Metabolism was incorporated via CYP3A4 and CYP3A5, with varying activities implemented for different CYP3A5 genotypes and study populations. The good predictive model performance is demonstrated for the examined food effect studies with 6/6 predicted FDI area under the curve determined between first and last concentration measurements (AUClast) and 6/6 predicted FDI maximum whole blood concentration (Cmax) ratios within twofold of the respective observed ratios. In addition, 7/7 predicted DD(G)I AUClast and 6/7 predicted DD(G)I Cmax ratios were within twofold of their observed values. Potential applications of the final model include model-informed drug discovery and development or the support of model-informed precision dosing

    Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update

    Get PDF
    CYP2D6 and CYP2C19 polymorphisms affect the exposure, efficacy and safety of tricyclic antidepressants (TCAs), with some drugs being affected by CYP2D6 only (e.g., nortriptyline and desipramine) and others by both polymorphic enzymes (e.g., amitriptyline, clomipramine, doxepin, imipramine, and trimipramine). Evidence is presented for CYP2D6 and CYP2C19 genotype-directed dosing of TCAs. This document is an update to the 2012 Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Tricyclic Antidepressants

    Meta-analysis on the association of VEGFR1 genetic variants with sunitinib outcome in metastatic renal cell carcinoma patients

    Get PDF
    VEGFR1 rs9582036 and rs9554320 were previously reported the association with sunitinib progression-free survival (PFS) and overall survival (OS) in patients with metastatic renal cell carcinoma (mRCC). Hereafter, the association of both single nucleotide polymorphisms (SNPs) with PFS/OS was confirmed in two independent mRCC cohorts. The aim of the current study was to validate the associations of both SNPs with sunitinib outcome in three independent well-characterized cohorts (SUTOX, CCF and SOGUG) including 286 sunitinib-treated mRCC patients, as well as to perform a meta-analysis of current and published data combined. We found that rs9582036 and rs9554320 showed a significant association with sunitinib PFS in the CCF cohort (HR: 0.254, 95%CI: 0.092-0.703; P=0.008 and HR: 0.430, 95%CI: 0.200- 0.927

    The pediatric acenocoumarol dosing algorithm:The Children Anticoagulation and Pharmacogenetics Study

    Get PDF
    Essentials: A pediatric pharmacogenetic dosing algorithm for acenocoumarol has not yet been developed. We conducted a multicenter retrospective follow-up study in children in the Netherlands. Body surface area and indication explained 45.0% of the variability in dose requirement. Adding the genotypes of VKORC1, CYP2C9 and CYP2C18 to the algorithm increased this to 61.8%. Summary: Background: The large variability in dose requirement of vitamin K antagonists is well known. For warfarin, pediatric dosing algorithms have been developed to predict the correct dose for a patient; however, this is not the case for acenocoumarol. Objectives: To develop dosing algorithms for pediatric patients receiving acenocoumarol with and without genetic information. Methods: The Children Anticoagulation and Pharmacogenetics Study was designed as a multicenter retrospective follow-up study in Dutch anticoagulation clinics and children's hospitals. Pediatric patients who used acenocoumarol between 1995 and 2014 were selected for inclusion. Clinical information and saliva samples for genotyping of the genes encoding cytochrome P450 (CYP) 2C9, vitamin K epoxide reductase complex subunit 1 (VKORC1), CYP4F2, CYP2C18 and CYP3A4 were collected. Linear regression was used to analyze their association with the log mean stable dose. A stable period was defined as three or more consecutive International Normalized Ratio measurements within the therapeutic range over a period of ≄ 3 weeks. Results: In total, 175 patients were included in the study, of whom 86 had a stable period and no missing clinical information (clinical cohort; median age 8.9 years, and 49% female). For 80 of these 86 patien

    Standardizing CYP2D6 Genotype to Phenotype Translation: Consensus Recommendations from the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153095/1/cts12692_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153095/2/cts12692-sup-0001-Supinfo.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153095/3/cts12692.pd

    Association of single nucleotide polymorphisms in IL8 and IL13 with sunitinib-induced toxicity in patients with metastatic renal cell carcinoma

    Get PDF
    Purpose: Earlier, the association of single nucleotide polymorphisms (SNPs) with toxicity and efficacy of sunitinib has been explored in patients with metastatic renal cel

    Correction:Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene–drug interaction between CYP2D6 and opioids (codeine, tramadol and oxycodone) (European Journal of Human Genetics, (2021), 10.1038/s41431-021-00920-y)

    Get PDF
    The Data statement was partly wrong and should have read as below. DATA AVAILABILITY All data and material are either included in the Supplementary information or publicly available (i.e., the published articles, PubMed). The guidelines and background information are available on the website of the Royal Dutch Pharmacists Association (KNMP) (Pharmacogenetic Recommendations. Available from: https://www.knmp.nl/). The guidelines and background information will be available on PharmGKB.org
    • 

    corecore