98 research outputs found

    A retrospective pilot study to determine whether the reproductive tract microbiota differs between women with a history of infertility and fertile women

    Full text link
    © 2017 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists Background: We know very little about the microbiota inhabiting the upper female reproductive tract and how it impacts on fertility. Aims: This pilot study aimed to examine the vaginal, cervical and endometrial microbiota for women with a history of infertility compared to women with a history of fertility. Materials and methods: Using a retrospective case–control study design, women were recruited for collection of vaginal, cervical and endometrial samples. The microbiota composition was analysed by 16S ribosomal RNA (rRNA) gene amplification and endometrial expression of selected human genes by quantitative reverse transcription polymerase chain reaction. Results: Sixty-five specimens from the reproductive tract of 31 women were successfully analysed using 16S rRNA gene amplicon sequencing (16 controls and 15 cases). The dominant microbial community members were consistent in the vagina and cervix, and generally consistent with the endometrium although the relative proportions varied. We detected three major microbiota clusters that did not group by tissue location or case–control status. There was a trend that infertile women more often had Ureaplasma in the vagina and Gardnerella in the cervix. Testing for the expression of selected genes in the endometrium did not show evidence of correlation with case–control status, or with microbial community composition, although Tenascin-C expression correlated with a history of miscarriage. Conclusions: There is a need for further exploration of the endometrial microbiota, and how the microbiota members or profile interplays with fertility or assisted reproductive technologies

    An essential function for the ATR-Activation-Domain (AAD) of TopBP1 in mouse development and cellular senescence

    Get PDF
    ATR activation is dependent on temporal and spatial interactions with partner proteins. In the budding yeast model, three proteins – Dpb11TopBP1, Ddc1Rad9 and Dna2 - all interact with and activate Mec1ATR. Each contains an ATR activation domain (ADD) that interacts directly with the Mec1ATR:Ddc2ATRIP complex. Any of the Dpb11TopBP1, Ddc1Rad9 or Dna2 ADDs is sufficient to activate Mec1ATR in vitro. All three can also independently activate Mec1ATR in vivo: the checkpoint is lost only when all three AADs are absent. In metazoans, only TopBP1 has been identified as a direct ATR activator. Depletion-replacement approaches suggest the TopBP1-AAD is both sufficient and necessary for ATR activation. The physiological function of the TopBP1 AAD is, however, unknown. We created a knock-in point mutation (W1147R) that ablates mouse TopBP1-AAD function. TopBP1-W1147R is early embryonic lethal. To analyse TopBP1-W1147R cellular function in vivo, we silenced the wild type TopBP1 allele in heterozygous MEFs. AAD inactivation impaired cell proliferation, promoted premature senescence and compromised Chk1 signalling following UV irradiation. We also show enforced TopBP1 dimerization promotes ATR-dependent Chk1 phosphorylation. Our data suggest that, unlike the yeast models, the TopBP1-AAD is the major activator of ATR, sustaining cell proliferation and embryonic development

    Clinically diagnosed childhood asthma and follow-up of symptoms in a Swedish case control study

    Get PDF
    BACKGROUND: Childhood asthma has risen dramatically not only in the western societies and now forms a major and still increasing public health problem. The aims of this study were to follow up at the age of ten the patterns of asthma symptoms and associations among children with a clinically diagnosed asthma in a sizeable urban-rural community and to in compare them with demographic controls using a standardised questionnaire. METHODS: In a defined region in Sweden with a population of about 150 000 inhabitants, all children (n = 2 104) born in 1990 were recorded. At the age of seven all primary care and hospital records of the 1 752 children still living in the community were examined, and a group of children (n = 191) was defined with a well-documented and medically confirmed asthma diagnosis. At the age of ten, 86 % of these cases (n = 158) and controls (n = 171) completed an ISAAC questionnaire concerning asthma history, symptoms and related conditions. RESULTS: Different types of asthma symptoms were highly and significantly over-represented in the cases. Reported asthma heredity was significantly higher among the cases. No significant difference in reported allergic rhinitis or eczema as a child was found between cases and controls. No significant difference concerning social factors or environmental exposure was found between case and controls. Among the control group 4.7 % of the parents reported that their child actually had asthma. These are likely to be new asthma cases between the age of seven and ten and give an estimated asthma prevalence rate at the age of ten of 15.1 % in the studied cohort. CONCLUSION: A combination of medical verified asthma diagnosis through medical records and the use of self-reported symptom through the ISAAC questionnaire seem to be valid and reliable measures to follow-up childhood asthma in the local community. The asthma prevalence at the age of ten in the studied birth cohort is considerably higher than previous reports for Sweden. Both the high prevalence figure and allowing the three-year lag phase for further settling of events in the community point at the complementary roles of both hospital and primary care in the comprehensive coverage and control of childhood asthma in the community

    Protocol for Birmingham Atrial Fibrillation Treatment of the Aged study (BAFTA): a randomised controlled trial of warfarin versus aspirin for stroke prevention in the management of atrial fibrillation in an elderly primary care population.

    Get PDF
    Background Atrial fibrillation (AF) is an important independent risk factor for stroke. Randomised controlled trials have shown that this risk can be reduced substantially by treatment with warfarin or more modestly by treatment with aspirin. Existing trial data for the effectiveness of warfarin are drawn largely from studies in selected secondary care populations that under-represent the elderly. The Birmingham Atrial Fibrillation Treatment of the Aged (BAFTA) study will provide evidence of the risks and benefits of warfarin versus aspirin for the prevention of stroke for older people with AF in a primary care setting. Study design A randomised controlled trial where older patients with AF are randomised to receive adjusted dose warfarin or aspirin. Patients will be followed up at three months post-randomisation, then at six monthly intervals there after for an average of three years by their general practitioner. Patients will also receive an annual health questionnaire. 1240 patients will be recruited from over 200 practices in England. Patients must be aged 75 years or over and have AF. Patients will be excluded if they have a history of any of the following conditions: rheumatic heart disease; major non-traumatic haemorrhage; intra-cranial haemorrhage; oesophageal varices; active endoscopically proven peptic ulcer disease; allergic hypersensitivity to warfarin or aspirin; or terminal illness. Patients will also be excluded if the GP considers that there are clinical reasons to treat a patient with warfarin in preference to aspirin (or vice versa). The primary end-point is fatal or non-fatal disabling stroke (ischaemic or haemorrhagic) or significant arterial embolism. Secondary outcomes include major extra-cranial haemorrhage, death (all cause, vascular), hospital admissions (all cause, vascular), cognition, quality of life, disability and compliance with study medication

    Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres

    Get PDF
    Cells respond to DNA double-strand breaks (DSBs) and uncapped telomeres by recruiting checkpoint and repair factors to the site of lesions. Single-stranded DNA (ssDNA) is an important intermediate in the repair of DSBs and is produced also at uncapped telomeres. Here, we provide evidence that binding of the checkpoint protein Rad9, through its Tudor domain, to methylated histone H3-K79 inhibits resection at DSBs and uncapped telomeres. Loss of DOT1 or mutations in RAD9 influence a Rad50-dependent nuclease, leading to more rapid accumulation of ssDNA, and faster activation of the critical checkpoint kinase, Mec1. Moreover, deletion of RAD9 or DOT1 partially bypasses the requirement for CDK1 in DSB resection. Interestingly, Dot1 contributes to checkpoint activation in response to low levels of telomere uncapping but is not essential with high levels of uncapping. We suggest that both Rad9 and histone H3 methylation allow transmission of the damage signal to checkpoint kinases, and keep resection of damaged DNA under control influencing, both positively and negatively, checkpoint cascades and contributing to a tightly controlled response to DNA damage

    Parrots Eat Nutritious Foods despite Toxins

    Get PDF
    Generalist herbivores are challenged not only by the low nitrogen and high indigestibility of their plant foods, but also by physical and chemical defenses of plants. This study investigated the foods of wild parrots in the Peruvian Amazon and asked whether these foods contain dietary components that are limiting for generalist herbivores (protein, lipids, minerals) and in what quantity; whether parrots chose foods based on nutrient content; and whether parrots avoid plants that are chemically defended.We made 224 field observations of free-ranging parrots of 17 species in 8 genera foraging on 102 species of trees in an undisturbed tropical rainforest, in two dry seasons (July-August 1992-1993) and one wet season (January-February1994). We performed laboratory analyses of parts of plants eaten and not eaten by parrots and brine shrimp assays of toxicity as a proxy for vertebrates. Parrots ate seeds, fruits, flowers, leaves, bark, and insect larvae, but up to 70% of their diet comprised seeds of many species of tropical trees, in various stages of ripeness. Plant parts eaten by parrots were rich in protein, lipid, and essential minerals, as well as potentially toxic chemicals. Seeds were higher than other plant materials in protein and lipid and lower in fiber. Large macaws of three species ate foods higher in protein and lipids and lower in fiber compared to plant parts available but not eaten. Macaws ate foods that were lower in phenolic compounds than foods they avoided. Nevertheless, foods eaten by macaws contained measurable levels of toxicity. Macaws did not appear to make dietary selections based on mineral content.Parrots represent a remarkable example of a generalist herbivore that consumes seeds destructively despite plant chemical defenses. With the ability to eat toxic foods, rainforest-dwelling parrots exploited a diversity of nutritious foods, even in the dry season when food was scarce for other frugivores and granivores

    Magnesium nebulization utilization in management of pediatric asthma (MagNUM PA) trial: study protocol for a randomized controlled trial

    Full text link

    Phospholipase D signaling: orchestration by PIP2 and small GTPases

    Get PDF
    Hydrolysis of phosphatidylcholine by phospholipase D (PLD) leads to the generation of the versatile lipid second messenger, phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival. PLD activity can be dramatically stimulated by a large number of cell surface receptors and is elaborately regulated by intracellular factors, including protein kinase C isoforms, small GTPases of the ARF, Rho and Ras families and, particularly, by the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 is well known as substrate for the generation of second messengers by phospholipase C, but is now also understood to recruit and/or activate a variety of actin regulatory proteins, ion channels and other signaling proteins, including PLD, by direct interaction. The synthesis of PIP2 by phosphoinositide 5-kinase (PIP5K) isoforms is tightly regulated by small GTPases and, interestingly, by PA as well, and the concerted formation of PIP2 and PA has been shown to mediate receptor-regulated cellular events. This review highlights the regulation of PLD by membrane receptors, and describes how the close encounter of PLD and PIP5K isoforms with small GTPases permits the execution of specific cellular functions
    corecore