222 research outputs found

    An integrated plasma spectroscopic and capacitive sensing platform for water quality diagnostics

    Get PDF
    Even in modern times, the consumption of polluted water continues to inflict tremendous suffering on millions of people worldwide that is largely preventable with adequate sanitation practices, routine water quality diagnostics, and treatment. However, conventional water quality monitoring practices remain a time consuming endeavor, where water samples collected on-site are transported to off-site laboratories for evaluation with laboratory-scale chemical analysis devices. While considerable efforts have been made to miniaturize these devices for in-field use, many of the devices reported in the literature provide an incomplete assessment of a water contaminant\u27s environmental impact by focusing on identifying its chemical composition and providing limited or no data regarding the contaminant\u27s concentration. A water contaminant\u27s chemical composition and concentration must be known to adequately assess its human health and environmental impact, as well as coordinating effective restoration and maintenance efforts. The field portable water diagnostic system reported here addresses this need with dual miniaturized plasma spectroscopic and capacitive sensing elements. Both sensing platforms capitalize on a water sample preconcentration stage that isolates contaminant particles from the liquid water solution as a porous thin film. This arrangement yields a more robust spectral emission signature from which the contaminant can be spectroscopically identified and allows the contaminant\u27s concentration to be estimated as a function of the film\u27s capacitance. A numerical contaminant concentration-to-capacitance model was developed for water samples containing single and multiple contaminant species to interpret the capacitive sensor\u27s output, incorporating the physical parameters of the contaminant material and the device\u27s capacitive analysis chamber which houses the porous contaminant film. Prototypes of each sensing platform were developed separately to investigate first generation design flaws and optimize the spectroscopic and capacitive analysis procedures. Design modifications for each platform a were then incorporated into an integrated diagnostic system, combining both sensing platforms, to perform a complete water quality analysis of a pollutant\u27s chemical composition and concentration. Performance testing of the integrated diagnostic system focused on analyzing representatives of suspended and dissolved water contaminants that promote the incubation and spread of waterborne pathogens at concentration ranges comparable to regulations set by the United States Environmental Protection Agency

    2003 Manifesto on the California Electricity Crisis

    Get PDF
    The authors, an ad-hocgroup of professionals with experience in regulatory and energy economics, share a common concern with the continuing turmoil facing the electricity industry ("the industry") in California. Most ofthe authorsendorsed the first California Electricity Manifesto issued on January 25, 2001. Almost two years have passed since that first Manifesto. While wholesale electric prices have moderated and California no longer faces the risk of blackouts, in many ways the industry is in worse shape now than it was at the start of 2001. As a result, the group of signatories continues to have a deep concern with the conflicting policy directions being pursued for the industry at both the State and Federal levels of government and the impact the uncertainties associated with these conflicting policies will have, long term, on the economy of California. Theauthorshave once again convened under the auspices of the Institute of Management, Innovation and Organization at the University of California, Berkeley, to put forward ourtheir ideas on a basic set of necessary policies to move the industry forward for the benefit of all Californians and the nation. The authors point out that theydo not pretend to be "representative." They do bring, however, a very diverse range of backgrounds and expertise.Technology and Industry, Regulatory Reform

    Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays

    Get PDF
    Typical assays used to discover and analyze small molecules that inhibit the hepatitis C virus (HCV) NS3 helicase yield few hits and are often confounded by compound interference. Oligonucleotide binding assays are examined here as an alternative. After comparing fluorescence polarization (FP), homogeneous time-resolved fluorescence (HTRF®; Cisbio) and AlphaScreen® (Perkin Elmer) assays, an FP-based assay was chosen to screen Sigma’s Library of Pharmacologically Active Compounds (LOPAC) for compounds that inhibit NS3-DNA complex formation. Four LOPAC compounds inhibited the FP-based assay: aurintricarboxylic acid (ATA) (IC50 = 1.4 μM), suramin sodium salt (IC50 = 3.6 μM), NF 023 hydrate (IC50 = 6.2 μM) and tyrphostin AG 538 (IC50 = 3.6 μM). All but AG 538 inhibited helicase-catalyzed strand separation, and all but NF 023 inhibited replication of subgenomic HCV replicons. A counterscreen using Escherichia coli single-stranded DNA binding protein (SSB) revealed that none of the new HCV helicase inhibitors were specific for NS3h. However, when the SSB-based assay was used to analyze derivatives of another non-specific helicase inhibitor, the main component of the dye primuline, it revealed that some primuline derivatives (e.g. PubChem CID50930730) are up to 30-fold more specific for HCV NS3h than similarly potent HCV helicase inhibitors.National Institutes of Health [RO1 AI088001]; Research Growth Initiative Award [101X219] from the University of Wisconsin-Milwaukee Research Foundation; National Institutes of Health Molecular Libraries Initiative [U54 HG005031]. Funding for open access charge: University of Wisconsin-Milwaukee Research Foundation

    Substituting carbohydrate at lunch for added protein increases fat oxidation during subsequent exercise in healthy males

    Get PDF
    Context How pre-exercise meal composition influences metabolic and health responses to exercise later in the day is currently unclear. Objective Examine the effects of substituting carbohydrate for protein at lunch on subsequent exercise metabolism, appetite, and energy intake. Methods Twelve healthy males completed three trials in randomized, counterbalanced order. Following a standardized breakfast (779 ± 66 kcal; ∼08:15), participants consumed a lunch (1186 ± 140 kcal; ∼13:15) containing either 0.2 g·kg-1 carbohydrate and ∼2 g·kg-1 protein (LO-CARB), 2 g·kg-1 carbohydrate and ∼0.4 g·kg-1 protein (HI-CARB), or fasted (FAST). Participants later cycled at ∼60% V̇O2peak for 1 h (∼16:15) and post-exercise ad-libitum energy intake was measured (∼18:30). Substrate oxidation, subjective appetite, and plasma concentrations of glucose, insulin, non-esterified fatty acids (NEFA), peptide YY (PYY), glucagon-like peptide-1 (GLP-1), and acylated ghrelin (AG) were measured for 5 h post-lunch. Results Fat oxidation was greater during FAST (+11.66 ± 6.63 g) and LO-CARB (+8.00 ± 3.83 g) than HI-CARB (p < 0.001), with FAST greater than LO-CARB (+3.67 ± 5.07 g; p < 0.05). NEFA were lowest in HI-CARB and highest in FAST, with insulin demonstrating the inverse response (all p < 0.01). PYY and GLP-1 demonstrated a stepwise pattern, with LO-CARB greatest and FAST lowest (all p < 0.01). AG was lower during HI-CARB and LO-CARB versus FAST (p < 0.01). Energy intake in LO-CARB was lower than FAST (-383 ± 233 kcal; p < 0.001) and HI-CARB (-313 ± 284 kcal; p < 0.001). Conclusion Substituting carbohydrate for protein in a pre-exercise lunch increased fat oxidation, suppressed subjective and hormonal appetite, and reduced post-exercise energy intake

    Quantifying interictal intracranial EEG to predict focal epilepsy

    Full text link
    Intracranial EEG (IEEG) is used for 2 main purposes, to determine: (1) if epileptic networks are amenable to focal treatment and (2) where to intervene. Currently these questions are answered qualitatively and sometimes differently across centers. There is a need for objective, standardized methods to guide surgical decision making and to enable large scale data analysis across centers and prospective clinical trials. We analyzed interictal data from 101 patients with drug resistant epilepsy who underwent presurgical evaluation with IEEG. We chose interictal data because of its potential to reduce the morbidity and cost associated with ictal recording. 65 patients had unifocal seizure onset on IEEG, and 36 were non-focal or multi-focal. We quantified the spatial dispersion of implanted electrodes and interictal IEEG abnormalities for each patient. We compared these measures against the 5 Sense Score (5SS), a pre-implant estimate of the likelihood of focal seizure onset, and assessed their ability to predict the clinicians choice of therapeutic intervention and the patient outcome. The spatial dispersion of IEEG electrodes predicted network focality with precision similar to the 5SS (AUC = 0.67), indicating that electrode placement accurately reflected pre-implant information. A cross-validated model combining the 5SS and the spatial dispersion of interictal IEEG abnormalities significantly improved this prediction (AUC = 0.79; p<0.05). The combined model predicted ultimate treatment strategy (surgery vs. device) with an AUC of 0.81 and post-surgical outcome at 2 years with an AUC of 0.70. The 5SS, interictal IEEG, and electrode placement were not correlated and provided complementary information. Quantitative, interictal IEEG significantly improved upon pre-implant estimates of network focality and predicted treatment with precision approaching that of clinical experts.Comment: 25 pages, 4 Figures, 1 tabl

    The Pan-STARRS Moving Object Processing System

    Full text link
    We describe the Pan-STARRS Moving Object Processing System (MOPS), a modern software package that produces automatic asteroid discoveries and identifications from catalogs of transient detections from next-generation astronomical survey telescopes. MOPS achieves > 99.5% efficiency in producing orbits from a synthetic but realistic population of asteroids whose measurements were simulated for a Pan-STARRS4-class telescope. Additionally, using a non-physical grid population, we demonstrate that MOPS can detect populations of currently unknown objects such as interstellar asteroids. MOPS has been adapted successfully to the prototype Pan-STARRS1 telescope despite differences in expected false detection rates, fill-factor loss and relatively sparse observing cadence compared to a hypothetical Pan-STARRS4 telescope and survey. MOPS remains >99.5% efficient at detecting objects on a single night but drops to 80% efficiency at producing orbits for objects detected on multiple nights. This loss is primarily due to configurable MOPS processing limits that are not yet tuned for the Pan-STARRS1 mission. The core MOPS software package is the product of more than 15 person-years of software development and incorporates countless additional years of effort in third-party software to perform lower-level functions such as spatial searching or orbit determination. We describe the high-level design of MOPS and essential subcomponents, the suitability of MOPS for other survey programs, and suggest a road map for future MOPS development.Comment: 57 Pages, 26 Figures, 13 Table

    B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response

    Get PDF
    We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the μMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous μMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization. © 2013 Kozakiewicz et al
    corecore