173 research outputs found

    Effects of Chronic PPAR-Agonist Treatment on Cardiac Structure and Function, Blood Pressure, and Kidney in Healthy Sprague-Dawley Rats

    Get PDF
    PPAR-γ agonists have been associated with heart failure (HF) in diabetic patients. These incidences have been reported mostly in patient populations who were at high risk for HF or had pre-existing impaired cardiovascular function. However, whether there are similar effects of these agents in subjects with no or reduced cardiovascular pathophysiology is not clear. In this study, the effects of chronic treatment with PD168, a potent peroxisome proliferator activated receptor (PPAR) subtype-γ agonist with weak activity at PPAR-α, and rosiglitazone (RGZ), a less potent PPAR-γ agonist with no PPAR-α activity, were evaluated on the cardiovascular-renal system in healthy male Sprague-Dawley (SD) rats by serial echocardiography and radiotelemetry. Rats were treated with vehicle (VEH), PD168, @ 10 or 50 mg/kg·bw/day (PD-10 or PD-50, resp.) or RGZ @ 180 mg/kg·bw/day for 28 days (n = 10/group). Relative to VEH, RGZ, and both doses of PD168 resulted in a significant fall in blood pressure. Furthermore, RGZ and PD168 increased plasma volume (% increase from baseline) 18%, 22%, and 48% for RGZ, PD-10, and PD-50, respectively. PD168 and RGZ significantly increased urinary aldosterone excretion and heart-to-body weight ratio relative to VEH. In addition, PD168 significantly decreased (10–16%) cardiac ejection fraction (EF) and increased left ventricular area (LVA) in systole (s) and diastole (d) in PD-10 and -50 rats. RGZ significantly increased LVAd; however, it did not affect EF relative to VEH. In conclusion, chronic PPAR-γ therapy may predispose the cardiorenal system to a potential sequela of structural and/or functional changes that may be deleterious with regard to morbidity and mortality

    Urinary Exosomal microRNA-451-5p Is a Potential Early Biomarker of Diabetic Nephropathy in Rats

    Get PDF
    Non-invasive renal signatures can help in serial monitoring of diabetic patients. We tested whether urinary exosomal (UE) microRNA (miR) analysis could non-invasively predict renal pathology in diabetic rats during the course of diabetes. Diabetes mellitus (DM) was induced in male Wistar rats by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg body weight). Non-diabetic control (CTRL) rats were injected with vehicle. Insulin (INS) treatment (5U/d, s.c.) was provided to 50% of the DM rats. Urine samples were collected at weeks 3, 6, and 9 following injections and UE prepared. An increase in miR-451-5p and miR-16, observed by pilot small RNA sequencing of UE RNA, was confirmed by quantitative real-time polymerase chain reaction (qPCR) and selected for further study. Subsets of rats were euthanized after 3, 6, and 9 weeks of diabetes for renal pathology analysis, including determination of the tubulointerstitial fibrotic index (TFI) and glomerulosclerotic index (GI) scores. qPCR showed a substantial rise in miR-451-5p in UE from DM rats during thecourse of diabetes, with a significant rise (median fold change >1000) between 3 and 6 weeks. Moreover, UE miR-451-5p at 6 weeks predicted urine albumin at 9 weeks (r = 0.76). A delayed but significant rise was also observed for miR-16. In contrast, mean urine albumin only increased 21% between 3 and 6 weeks (non-significant rise), and renal TFI and GI were unchanged till 9 weeks. Renal expression of miR-451-5p and miR-16 (at 10 weeks) did not correlate with urine levels, and moreover, was negatively associated with indices of renal pathology (r�-0.70, p = 0.005 for TFI and r�-0.6, p�0.02 for GI). Overall, a relative elevation in renal miR-451-5p and miR-16 in diabetes appeared protective against diabetes- induced kidney fibrosis; while UE miR-451-5p may hold prognostic value as an earlyand sensitive non-invasive indicator of renal diseas

    Association of Wilms tumor-1 protein in urinary exosomes with kidney injury: a population-based cross-sectional study

    Get PDF
    ObjectiveLoss of Wilms tumor-1 (WT1) protein, a podocytopathy marker, through urine exosome (uE), could be an early indication of kidney injury. We examined WT1 in uE (uE-WT1), along with other urine markers of glomerular and kidney tubule injury, in individuals without chronic kidney disease (CKD).MethodologyThe cross-sectional study included individuals who reported having no evidence of chronic kidney disease (CKD). Albumin-to-creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR) were used to assess kidney function. eGFR was calculated using the 2009 CKD-EPI (CKD-Epidemiological) equation. WT1 was analyzed in uE from humans and Wistar rats (before and after the 9th week of diabetes, n = 20). uE-WT1, urinary neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) were estimated using ELISA. The Kruskal-Wallis H test, Mann-Whitney U test, and stepwise multivariable linear regression were performed.ResultsUrine NGAL and ACR increase with uE-WT1 quartiles (n = 146/quarter). Similarly, uE-WT1, KIM-1, and NGAL were positively associated with ACR. Furthermore, KIM-1, NGAL, and uE-WT1 correlated with ACR. uE-WT1 outperformed KMI-1 and NGAL to explain ACR variability (25% vs. 6% or 9%, respectively). Kidney injury in streptozotocin-induced diabetic rats was associated with a significant rise in uE-WT1. Moreover, the findings were confirmed by the histopathology of kidney tissues from rats.ConclusionuE-WT1 was strongly associated with kidney function in rats. In individuals without CKD, uE-WT1 outperformed NGAL as a determinant of differences in ACR

    Molecular surveillance of dengue virus in field-collected Aedes mosquitoes from Bhopal, central India: evidence of circulation of a new lineage of serotype 2

    Get PDF
    IntroductionDengue fever is hyperendemic in several Southeast and South Asian countries, including India, with all four serotypes (DENV 1–4) circulating at different periods and in different locations. Sustainable and improved virological and entomological surveillance is the only tool to prevent dengue and other vector-borne diseases.ObjectivesThe present study has been carried out to detect and characterize the circulating dengue virus (DENV) in field-collected Aedes mosquitoes in Bhopal, Central India.MethodsAedes mosquitoes were collected from 29 localities within Bhopal city during October 2020 to September 2022. DENV infection was assessed in the individual head and thorax regions of Aedes mosquitoes using reverse transcriptase PCR. Positive samples were sequenced, and the circulating serotypes and genotypes were determined using phylogenetic analysis.ResultsDENV RNA was detected in 7 Aedes aegypti and 1 Aedes albopictus, with infection rates of 0.59 and 0.14%, respectively. Phylogenetic analysis revealed all the isolates belonged to DENV serotype 2 and distinctly clustered with the non-Indian lineage (cosmopolitan genotype 4a), which was not recorded from the study area earlier. The time to most common recent ancestor (TMRCA) of these sequences was 7.4 years old, with the highest posterior density (HPD) of 3.5–12.2 years, indicating that this new lineage emerged during the year 2014. This is the first report on the DENV incrimination in both Ae. aegypti and Ae. albopictus mosquitoes collected from Bhopal, Central India.ConclusionThe observed emergence of the non-Indian lineage of DENV-2 in Bhopal, which again is a first report from the area, coincides with the gradual increase in DENV cases in Bhopal since 2014. This study emphasizes the importance of DENV surveillance and risk assessment in this strategically important part of the country to decipher its outbreak and severe disease-causing potential

    Roadblocks of Urinary EV Biomarkers:Moving Toward the Clinic

    Get PDF
    Despite remarkable interest in the biomarker potential of urinary extracellular vesicles (uEVs) and the identification of numerous promising candidates, their clinical translation still presents multiple challenges. The opportunities for successful translation are obvious, yet the main roadblocks on the way have hardly been systematically considered and more coordinated approaches are needed to overcome them. In the present review article, we have identified the most relevant roadblocks of clinical translation of urinary EV-based biomarkers and discuss possible solutions to overcome them. These roadblocks are categorized as fundamental and technical but also related to development of novel biomarker assays and clinical acceptance. In addition, hurdles within the regulatory approval process are discussed. It is clear that various roadblocks to clinical translation of urinary EV biomarkers exist; however, they are addressable by promoting rigor and reproducibility as well as collaboration between basic and clinical scientists, clinicians, industry and regulatory bodies. Moreover, knowledge of obstacles for assay development and regulatory requirements should already be considered when developing a new biomarker to maximize the chance of successful translation. This review presents not only a status quo, but also a roadmap for the further development of the field.</p

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Tiwari, Swasti

    No full text

    Renal gluconeogenesis in insulin resistance: A culprit for hyperglycemia in diabetes

    Full text link

    Molecular Biology and Gene Regulation

    Full text link
    corecore