26 research outputs found
Performance of GaAs and silicon concentrator cells under 37 MeV proton irradiation
Gallium arsenide concentrator cells from three sources and silicon concentrator cells from one source were exposed to 37 MeV protons at fluences up to 2.8 x 10 to the 12th protons/sq cm. Performance data were taken after several fluences, at two temperatures (25 and 80 C), and at concentration levels from 1 to about 150 x AMO. Data at one sun and 25 C were taken with an X-25 xenon lamp solar simulator. Data at concentration were taken using a pulsed solar simulator with the assumption of a linear relationship between short circuit current and irradiance. The cells are 5 x 5 mm with a 4-mm diameter illuminated area
Heteroepitaxial InP solar cells on Si and GaAs substrates
The characteristics of InP cells processed from thin layers of InP heteroepitaxially grown on GaAs, on silicon with an intervening GaAs layer, and on GaAs with intervening Ga(x)In(1-x)As layers are described, and the factors affecting cell efficiency are discussed. Under 10 MeV proton irradiations, the radiation resistances of the heteroepitaxial cells were superior to that of homoepitaxial InP cells. The superior radiation resistance is attributed to the high dislocation densities present in the heteroepitaxial cells
Progress in indium phosphide solar cell research
Progress, dating from the start of the Lewis program, is reviewed emphasizing processing techniques which have achieved the highest efficiencies in a given year. To date, the most significant achievement has been attainment of AM0 total area efficiencies approaching 19 percent. Although closed tube diffusion is not considered to be an optimum process, reasonably efficient 2cm x 2cm and 1cm x 2cm InP cells have been produced in quantity by this method with a satellite to be launched in 1990 using these cells. Proton irradiation of these relatively large area cells indicates radiation resistance comparable to that previously reported for smaller InP cells. A similar result is found for the initial proton irradiations of ITO/InP cells processed by D. C. sputtering. With respect to computer modelling, a comparison of n/p homojunction InP and GaAs cells of identical geometries and dopant concentrations has confirmed the superior radiation resistance of InP cells under 1 MeV electron irradiations
Radiation performance of AlGaAs concentrator cells and expected performance of cascade structures
Aluminum gallium arsenide, GaAs, silicon and InGaAs cells have been irradiated with 1 MeV electrons and 37 MeV protons. These cells are candidates for individual cells in a cascade structure. Data is presented for both electron and proton irradiation studies for one sun and a concentration level of 100X AMO. Results of calculations on the radiation resistance of cascade cell structures based on the individual cell data are also presented. Both series connected and separately connected structures are investigated
Predicted performance of InP solar cells in Cassegrainian and slats space concentrator arrays at 20 to 100 AM0, 80 to 100 C
Researchers have calculated the expected performance dependence of near-optimally designed shallow homojunction n+pp+InP solar cells on incident intensities up 200 AM0 and temperatures up to 100 C (373K). Both circular and rectangular cells have been considered, the former for use in a Cassegrainian concentrator array at 100 AM0, 80 to 100 C and the latter for use in a Slats type concentrator array at 20 AM0 80 to 100 C. Calculation of the temperature dependence of the performance parameters I sub sc, V sub oc, FF and eta was done by first verifying that the use of the measured temperature variation of I sub sc, of the best published value of the temperature dependence of the bandgap of InP, and of the temperature dependences of the lifetimes and mobilities of electrons and holes the same as in equivalently doped GaAs, gave calculated results that closely matched measured data on the temperature variation of I sub sc, V sub oc, and FF of four existing InP cells at 1 AM0. It was then assumed that the same temperature dependences of I sub sc, the bandgap and lifetimes and mobilities would hold in the near-optimally designed cells at the higher concentrations
A narrative review on the potential of red beetroot as an adjuvant strategy to counter fatigue in children with cancer
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. Cancer-related fatigue (CRF) is a debilitating adverse effect among children with cancer and a significant barrier to physical activity (PA) participation. PA interventions are effective at reducing fatigue and improving both quality of life (QOL) and functional outcomes in children with cancer. However, 50–70% of children with cancer do not meet PA guidelines. Thus, adjuvant methods are needed to increase PA participation. Given the growing interest in the use of beetroot juice to reduce exercise-induced fatigue, our narrative review evaluated the potential use of beetroot to improve PA participation to counter CRF and improve QOL. Our review of 249 articles showed a lack of published clinical trials of beetroot in children and adults with cancer. Trials of beetroot use had been conducted in a noncancer population (n = 198), and anticancer studies were primarily in the preclinical phase (n = 40). Although results are promising, with beetroot juice shown to counter exercise-induced fatigue in a variety of athletic and patient populations, its use to counter CRF in children with cancer is inconclusive. Pilot and feasibility studies are needed to examine the potential benefits of beetroot to counter CRF, increase PA participation, and improve QOL in children with cancer
Effectiveness of second generation antipsychotics: A systematic review of randomized trials
<p>Abstract</p> <p>Background</p> <p>Systematic reviews based on efficacy trials are inconclusive about which second generation antipsychotic drug (SGA) should be preferred in normal clinical practice, and studies with longer duration and more pragmatic designs are called for. Effectiveness studies, also known as naturalistic, pragmatic, practical or real life studies, adhere to these principles as they aim to mimic daily clinical practice and have longer follow-up.</p> <p>Objective</p> <p>To review the head-to-head effectiveness of SGAs in the domains of global outcomes, symptoms of disease, and tolerability.</p> <p>Methods</p> <p>Searches were made in Embase, PubMED, and the Cochrane central register of controlled trials for effectiveness studies published from 1980 to 2008, week 1. Different combinations of the keywords <it>antipsychotic*, neuroleptic* AND open, pragmatic, practical, naturalistic, real life, effectiveness, side effect*, unwanted effect*, tolera* AND compar* AND random* </it>were used.</p> <p>Results</p> <p>Sixteen different reports of randomized head-to-head comparisons of SGA effectiveness were located. There were differences regarding sample sizes, inclusion criteria and follow-up periods, as well as sources of financial sponsorship. In acute-phase and first-episode patients no differences between the SGAs were disclosed regarding alleviating symptoms of disease. Olanzapine was associated with more weight gain and adverse effects on serum lipids. In the chronic phase patients olanzapine groups had longer time to discontinuation of treatment and better treatment adherence compared to other SGAs. The majority of studies found no differences between the SGAs in alleviating symptoms of psychosis in chronically ill patients. Olanzapine was associated with more metabolic adverse effects compared to the others SGAs. There were surprisingly few between-drug differences regarding side effects. First generation antipsychotics were associated with lower total mental health care costs in 2 of 3 studies on chronically ill patients, but were also associated with more extrapyramidal side effects compared to the SGAs in several studies.</p> <p>Conclusion</p> <p>In chronically ill patients olanzapine may have an advantage over other SGAs regarding longer time to treatment discontinuation and better drug adherence, but the drug is also associated with more metabolic side effects. More effectiveness studies on first-episode psychosis are needed.</p
Cultural trauma, counter-narratives, and dialogical intellectuals: the works of Murakami Haruki and Mori Tatsuya in the context of the Aum affair
In this article, we offer a new conceptualization of intellectuals as carriers of cultural trauma through a case study of the Aum Affair, a series of crimes and terrorist attacks committed by the Japanese new religious movement Aum Shinrikyō. In understanding the performative roles intellectuals play in trauma construction, we offer a new dichotomy between “authoritative intellectuals,” who draw on their privileged parcours and status to impose a distinct trauma narrative, and “dialogical intellectuals,” who engage with local actors dialogically to produce polyphonic and open-ended trauma narratives. We identify three dimensions of dialogical intellectual action: firstly, the intellectuals may be involved in dialogue with local participants; secondly, the intellectual products themselves may be dialogical in content; and thirdly, there might be a concerted effort on the part of the intellectuals to record and to disseminate dialogue between local participants. In the context of the Aum Affair, we analyze the works of Murakami Haruki and Mori Tatsuya as dialogical intellectuals while they sought, with the help of local actors’ experiences, to challenge and to alter the orthodox trauma narrative of Aum Shinrikyō as exclusively a social evil external to Japanese society and an enemy to be excluded from it. Towards the end of the article, we discuss the broader significance of this case study and suggest that in light of recent societal and technological developments, the role and scope of dialogical intellectuals as carriers of trauma are changing and possibly expanding
A theoretical model of inflammation- and mechanotransduction- driven asthmatic airway remodelling
Inflammation, airway hyper-responsiveness and airway remodelling are well-established hallmarks of asthma, but their inter-relationships remain elusive. In order to obtain a better understanding of their inter-dependence, we develop a mechanochemical morphoelastic model of the airway wall accounting for local volume changes in airway smooth muscle (ASM) and extracellular matrix in response to transient inflammatory or contractile agonist challenges. We use constrained mixture theory, together with a multiplicative decomposition of growth from the elastic deformation, to model the airway wall as a nonlinear fibre-reinforced elastic cylinder. Local contractile agonist drives ASM cell contraction, generating mechanical stresses in the tissue that drive further release of mitogenic mediators and contractile agonists via underlying mechanotransductive signalling pathways. Our model predictions are consistent with previously described inflammation-induced remodelling within an axisymmetric airway geometry. Additionally, our simulations reveal novel mechanotransductive feedback by which hyper-responsive airways exhibit increased remodelling, for example, via stress-induced release of pro-mitogenic and procontractile cytokines. Simulation results also reveal emergence of a persistent contractile tone observed in asthmatics, via either a pathological mechanotransductive feedback loop, a failure to clear agonists from the tissue, or a combination of both. Furthermore, we identify various parameter combinations that may contribute to the existence of different asthma phenotypes, and we illustrate a combination of factors which may predispose severe asthmatics to fatal bronchospasms