52 research outputs found

    Empirically Derived Sensitivity of Vegetation to Climate across Global Gradients of Temperature and Precipitation

    Get PDF
    The natural composition of terrestrial ecosystems can be shaped by climate to take advantage of local environmental conditions. Ecosystem functioning (e.g., interaction between photosynthesis and temperature) can also acclimate to different climatological states. The combination of these two factors thus determines ecological–climate interactions. A global empirical map of the sensitivity of vegetation to climate is derived using the response of satellite-observed greenness to interannual variations in temperature and precipitation. Mechanisms constraining ecosystem functioning are inferred by analyzing how the sensitivity of vegetation to climate varies across climate space. Analysis yields empirical evidence for multiple physical and biological mediators of the sensitivity of vegetation to climate at large spatial scales. In hot and wet locations, vegetation is greener in warmer years despite temperatures likely exceeding thermally optimum conditions. However, sunlight generally increases during warmer years, suggesting that the increased stress from higher atmospheric water demand is offset by higher rates of photosynthesis. The sensitivity of vegetation transitions in sign (greener when warmer or drier to greener when cooler or wetter) along an emergent line in climate space with a slope of about 59 mm yr^(−1) °C^(−1), twice as steep as contours of aridity. The mismatch between these slopes is evidence at a global scale of the limitation of both water supply due to inefficiencies in plant access to rainfall and plant physiological responses to atmospheric water demand. This empirical pattern can provide a functional constraint for process-based models, helping to improve predictions of the global-scale response of vegetation to a changing climate

    Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2

    Get PDF
    Predicting how increasing atmospheric CO2 will affect the hydrologic cycle is of utmost importance for a range of applications ranging from ecological services to human life and activities. A typical perspective is that hydrologic change is driven by precipitation and radiation changes due to climate change, and that the land surface will adjust. Using Earth system models with decoupled surface (vegetation physiology) and atmospheric (radiative) CO2 responses, we here show that the CO2 physiological response has a dominant role in evapotranspiration and evaporative fraction changes and has a major effect on long-term runoff compared with radiative or precipitation changes due to increased atmospheric CO2. This major effect is true for most hydrological stress variables over the largest fraction of the globe, except for soil moisture, which exhibits a more nonlinear response. This highlights the key role of vegetation in controlling future terrestrial hydrologic response and emphasizes that the carbon and water cycles are intimately coupled over land

    Synergistic ecoclimate teleconnections from forest loss in different regions structure global ecological responses

    Get PDF
    ABSTRACT: Forest loss in hotspots around the world impacts not only local climate where loss occurs, but also influences climate and vegetation in remote parts of the globe through ecoclimate teleconnections. The magnitude and mechanism of remote impacts likely depends on the location and distribution of forest loss hotspots, but the nature of these dependencies has not been investigated. We use global climate model simulations to estimate the distribution of ecologically-relevant climate changes resulting from forest loss in two hotspot regions: western North America (wNA), which is experiencing accelerated dieoff, and the Amazon basin, which is subject to high rates of deforestation. The remote climatic and ecological net effects of simultaneous forest loss in both regions differed from the combined effects of loss from the two regions simulated separately, as evident in three impacted areas. Eastern South American Gross Primary Productivity (GPP) increased due to changes in seasonal rainfall associated with Amazon forest loss and changes in temperature related to wNA forest loss. Eurasia’s GPP declined with wNA forest loss due to cooling temperatures increasing soil ice volume. Southeastern North American productivity increased with simultaneous forest loss, but declined with only wNA forest loss due to changes in VPD. Our results illustrate the need for a new generation of local-to-global scale analyses to identify potential ecoclimate teleconnections, their underlying mechanisms, and most importantly, their synergistic interactions, to predict the responses to increasing forest loss under future land use change and climate change

    Airships: A New Horizon for Science

    Get PDF
    The "Airships: A New Horizon for Science" study at the Keck Institute for Space Studies investigated the potential of a variety of airships currently operable or under development to serve as observatories and science instrumentation platforms for a range of space, atmospheric, and Earth science. The participants represent a diverse cross-section of the aerospace sector, NASA, and academia. Over the last two decades, there has been wide interest in developing a high altitude, stratospheric lighter-than-air (LTA) airship that could maneuver and remain in a desired geographic position (i.e., "station-keeping") for weeks, months or even years. Our study found considerable scientific value in both low altitude (< 40 kft) and high altitude (> 60 kft) airships across a wide spectrum of space, atmospheric, and Earth science programs. Over the course of the study period, we identified stratospheric tethered aerostats as a viable alternative to airships where station-keeping was valued over maneuverability. By opening up the sky and Earth's stratospheric horizon in affordable ways with long-term flexibility, airships allow us to push technology and science forward in a project-rich environment that complements existing space observatories as well as aircraft and high-altitude balloon missions.Comment: This low resolution version of the report is 8.6 MB. For the high resolution version see: http://kiss.caltech.edu/study/airship

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    • 

    corecore