526 research outputs found

    Environmental microbiology as related to planetary quarantine Progress report

    Get PDF
    Research project summaries on spacecraft sterilization and planetary quarantin

    DIFFUSION STUDIES IN LIQUID METALS. Progress Report, June 16, 1969--June 15, 1970.

    Full text link

    Effect of short range order on electronic and magnetic properties of disordered Co based alloys

    Full text link
    We here study electronic structure and magnetic properties of disordered CoPd and CoPt alloys using Augmented Space Recursion technique coupled with the tight-binding linearized muffin tin orbital (TB-LMTO) method. Effect of short range ordering present in disordered phase of alloys on electronic and magnetic properties has been discussed. We present results for magnetic moments, Curie temperatures and electronic band energies with varying degrees of short range order for different concentrations of Co and try to understand and compare the magnetic properties and ordering phenomena in these systems.Comment: 15 pages,17 postscript figures,uses own style file

    Extreme precipitation strengthening in ion-implanted nickel

    Get PDF
    Precipitation strengthening of nickel was investigated using ion-implantation alloying and nanoindentation testing for particle separations in the nanometer range and volume fractions extending above 10O/O. Ion implantation of either oxygen alone or oxygen plus aluminum at room temperature was shown to produce substantial strengthening in the ion-treated layer, with yield strengths near 5 GPa in both cases. After annealing to 550"C the oxygen-alone layer loses much of the benefit, with its yield strength reduced to 1.2 GP~ but the dual ion-implanted layer retains a substantially enhanced yield strength of over 4 GPa. Examination by transmission electron f microscopy showed very fine dispersions of 1-5 nm diameter NiO and y-A1203 precipitates in the implanted layers before annealing. The heat treatment at 550"C induced ripening of the NiO particles to sizes ranging from 7 to 20 nm, whereas the more stable ~-A1203 precipitates were little changed. The extreme strengthening we observe is in semiquantitative agreement with predictions based on the application of dispersion-hardening theory to these microstructure

    Magnetic properties of X-Pt (X=Fe,Co,Ni) alloy systems

    Full text link
    We have studied the electronic and magnetic properties of Fe-Pt, Co-Pt and Ni-Pt alloy systems in ordered and disordered phases. The influence of various exchange-correlation functionals on values of equilibrium lattice parameters and magnetic moments in ordered Fe-Pt, Co-Pt and Ni-Pt alloys have been studied using linearized muffin-tin orbital method. The electronic structure calculations for the disordered alloys have been carried out using augmented space recursion technique in the framework of tight binding linearized muffin-tin orbital method. The effect of short range order has also been studied in the disordered phase of these systems. The results show good agreements with available experimental values.Comment: 21 pages, 4 eps figures, accepted for publication in Journal of Physics Condensed Matte

    A Re-examination of the Portevin-Le Chatelier Effect in Alloy 718 in Connection with Oxidation-Assisted Intergranular Cracking

    Get PDF
    In Alloy 718, a sharp transition exists in the fracture path changing from an intergranular brittle mode to a transgranular ductile mode which is associated with a transition of flow behavior from smooth in the dynamic strain aging regime to a serrated one in the Portevin-Le Chatelier (PLC) regime. In order to better understand both deformation and rupture behavior, PLC phenomenon in a precipitation-hardened nickel-base superalloy was carefully investigated in a wide range of temperatures [573 K to 973 K (300°C to 700°C)] and strain rates (109^-5 to 3.2910^-2 s^-1 ). Distinction was made between two PLC domains characterized by different evolutions of the critical strain to the onset of the first serration namely normal and inverse behavior. The apparent activation energies associated with both domains were determined using different methods. Results showed that normal and inverse behavior domains are related to dynamic interaction of dislocations with, respectively, interstitial and substitutional solutes atoms. This analysis confirms that normal PLC regime may be associated to the diffusion of carbon atoms, whereas the substitutional species involves in the inverse regime is discussed with an emphasis on the role of Nb and Mo

    Microstructure and interfacial reactions during active metal brazing of stainless steel to titanium

    Get PDF
    Microstructural evolution and interfacial reactions during active metal vacuum brazing of Ti (grade-2) and stainless steel (SS 304L) using a Ag-based alloy containing Cu, Ti, and Al was investigated. A Ni-depleted solid solution layer and a discontinuous layer of (Ni,Fe)2TiAl intermetallic compound formed on the SS surface and adjacent to the SS-braze alloy interface, respectively. Three parallel contiguous layers of intermetallic compounds, CuTi, AgTi, and (Ag,Cu)Ti2, formed at the Ti-braze alloy interface. The diffusion path for the reaction at this interface was established. Transmission electron microscopy revealed formation of nanocrystals of Ag-Cu alloy of size ranging between 20 and 30 nm in the unreacted braze alloy layer. The interdiffusion zone of β-Ti(Ag,Cu) solid solution, formed on the Ti side of the joint, showed eutectoid decomposition to lamellar colonies of α-Ti and internally twinned (Cu,Ag)Ti2 inter- metallic phase, with an orientation relationship between the two. Bend tests indicated that the failure in the joints occurred by formation and propagation of the crack mostly along the Ti- braze alloy interface, through the (Ag,Cu)Ti2 phase layer

    High-temperature electrical conductivity of aluminium nitride

    Full text link
    The electrical conductivity of hot-pressed polycrystalline aluminium nitride doped with oxygen and beryllium was measured as a function of temperature from 800 to 1200° C and over a range of nitrogen partial pressure from 10 2 to 10 5 Pa. The effect of beryllium dopant, the independence of conductivity from nitrogen partial pressure, and the observed activation energy suggested extrinsic electronic species or aluminium vacancies as charge carriers. Polarization measurements made with one electrode blocking to ionic species indicated that the aluminium nitride with oxygen impurity was an extrinsic electronic conductor.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44688/1/10853_2005_Article_BF01161209.pd
    corecore