222 research outputs found

    Relativistic and retardation effects in the two--photon ionization of hydrogen--like ions

    Full text link
    The non-resonant two-photon ionization of hydrogen-like ions is studied in second-order perturbation theory, based on the Dirac equation. To carry out the summation over the complete Coulomb spectrum, a Green function approach has been applied to the computation of the ionization cross sections. Exact second-order relativistic cross sections are compared with data as obtained from a relativistic long-wavelength approximation as well as from the scaling of non-relativistic results. For high-Z ions, the relativistic wavefunction contraction may lower the two-photon ionization cross sections by a factor of two or more, while retardation effects appear less pronounced but still give rise to non-negligible contributions.Comment: 6 pages, 2 figure

    IAEA activities in support of accelerator-based research and applications

    Get PDF
    Accelerator applications is one of the thematic areas, where the IAEA Physics Section supports IAEA Member States in strengthening their capabilities to adopt and benefit from the use of accelerators. A number of activities are being implemented by the IAEA Physics Section focusing on accelerator-based applications in multiple disciplines, facilitation of access to accelerator facilities, organization of meetings, coordination of joint research projects and capacity building in accelerator-based technologies and techniques. This communication reports on the currently implemented activities together with those planned for the near future

    Novel Coexistence of Superconductivity with Two Distinct Magnetic Orders

    Full text link
    The heavy fermion Ce(Rh,Ir)In5 system exhibits properties that range from an incommensurate antiferromagnet on the Rh-rich end to an exotic superconductor on the Ir-rich end of the phase diagram. At intermediate composition where antiferromagnetism coexists with superconductivity, two types of magnetic order are observed: the incommensurate one of CeRhIn5 and a new, commensurate antiferromagnetism that orders separately. The coexistence of f-electron superconductivity with two distinct f-electron magnetic orders is unique among unconventional superconductors, adding a new variety to the usual coexistence found in magnetic superconductors.Comment: 3 figures, 4 page

    Magnetic structure of antiferromagnetic NdRhIn5

    Get PDF
    The magnetic structure of antiferromagnetic NdRhIn5 has been determined using neutron diffraction. It has a commensurate antiferromagnetic structure with a magnetic wave vector (1/2,0,1/2) below T_N = 11K. The staggered Nd moment at 1.6K is 2.6mu_B aligned along the c-axis. We find the magnetic structure to be closely related to that of its cubic parent compound NdIn3 below 4.6K. The enhanced T_N and the absence of additional transitions below T_N for NdRhIn5 are interpreted in terms of an improved matching of the crystalline-electric-field (CEF), magnetocrystalline, and exchange interaction anisotropies. In comparison, the role of these competing anisotropies on the magnetic properties of the structurally related compound CeRhIn5 is discussed.Comment: 4 pages, 4 figure

    Lamb Shift of 3P and 4P states and the determination of α\alpha

    Get PDF
    The fine structure interval of P states in hydrogenlike systems can be determined theoretically with high precision, because the energy levels of P states are only slightly influenced by the structure of the nucleus. Therefore a measurement of the fine structure may serve as an excellent test of QED in bound systems or alternatively as a means of determining the fine structure constant α\alpha with very high precision. In this paper an improved analytic calculation of higher-order binding corrections to the one-loop self energy of 3P and 4P states in hydrogen-like systems with low nuclear charge number ZZ is presented. A comparison of the analytic results to the extrapolated numerical data for high ZZ ions serves as an independent test of the analytic evaluation. New theoretical values for the Lamb shift of the P states and for the fine structure splittings are given.Comment: 33 pages, LaTeX, 4 tables, 4 figure

    Relativistic Kramers-Pasternack Recurrence Relations

    Full text link
    Recently we have evaluated the matrix elements ,where where O ={1,\beta, i\mathbf{\alpha n}\beta} arethestandardDiracmatrixoperatorsandtheangularbracketsdenotethequantum−mechanicalaveragefortherelativisticCoulombproblem,intermsofgeneralizedhypergeometricfunctions are the standard Dirac matrix operators and the angular brackets denote the quantum-mechanical average for the relativistic Coulomb problem, in terms of generalized hypergeometric functions _{3}F_{2}(1) $ for all suitable powers and established two sets of Pasternack-type matrix identities for these integrals. The corresponding Kramers--Pasternack three-term vector recurrence relations are derived here.Comment: 12 pages, no figures Will appear as it is in Journal of Physics B: Atomic, Molecular and Optical Physics, Special Issue on Hight Presicion Atomic Physic

    Calculation of the two-photon decay rates of hydrogen-like ions by using B-polynomials

    Full text link
    A new approach is laid out to investigate the two photon atomic transitions. It is based on application of the finite basis solutions constructed from the Bernstein Polynomial (B-Polynomial) sets. We show that such an approach provides a very promising route for the relativistic second- (and even higher-order) calculations since it allows for analytical evaluation of the involved matrices elements. In order to illustrate possible applications of the method and to verify its accuracy, detailed calculations are performed for the 2s_{1/2}-1s_{1/2} transition in neutral hydrogen and hydrogen-like ions, and are compared with the theoretical predictions based on the well-established B-spline-basis-set approach

    Trim17, novel E3 ubiquitin-ligase, initiates neuronal apoptosis

    Get PDF
    Accumulating data indicate that the ubiquitin-proteasome system controls apoptosis by regulating the level and the function of key regulatory proteins. In this study, we identified Trim17, a member of the TRIM/RBCC protein family, as one of the critical E3 ubiquitin ligases involved in the control of neuronal apoptosis upstream of mitochondria. We show that expression of Trim17 is increased both at the mRNA and protein level in several in vitro models of transcription-dependent neuronal apoptosis. Expression of Trim17 is controlled by the PI3K/Akt/GSK3 pathway in cerebellar granule neurons (CGN). Moreover, the Trim17 protein is expressed in vivo, in apoptotic neurons that naturally die during post-natal cerebellar development. Overexpression of active Trim17 in primary CGN was sufficient to induce the intrinsic pathway of apoptosis in survival conditions. This pro-apoptotic effect was abolished in Bax(-/-) neurons and depended on the E3 activity of Trim17 conferred by its RING domain. Furthermore, knock-down of endogenous Trim17 and overexpression of dominant-negative mutants of Trim17 blocked trophic factor withdrawal-induced apoptosis both in CGN and in sympathetic neurons. Collectively, our data are the first to assign a cellular function to Trim17 by showing that its E3 activity is both necessary and sufficient for the initiation of neuronal apoptosis. Cell Death and Differentiation (2010) 17, 1928-1941; doi: 10.1038/cdd.2010.73; published online 18 June 201

    Theory and applications of atomic and ionic polarizabilities

    Get PDF
    Atomic polarization phenomena impinge upon a number of areas and processes in physics. The dielectric constant and refractive index of any gas are examples of macroscopic properties that are largely determined by the dipole polarizability. When it comes to microscopic phenomena, the existence of alkaline-earth anions and the recently discovered ability of positrons to bind to many atoms are predominantly due to the polarization interaction. An imperfect knowledge of atomic polarizabilities is presently looming as the largest source of uncertainty in the new generation of optical frequency standards. Accurate polarizabilities for the group I and II atoms and ions of the periodic table have recently become available by a variety of techniques. These include refined many-body perturbation theory and coupled-cluster calculations sometimes combined with precise experimental data for selected transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index measurements in microwave cavities, ab initio calculations of atomic structures using explicitly correlated wave functions, interferometry with atom beams, and velocity changes of laser cooled atoms induced by an electric field. This review examines existing theoretical methods of determining atomic and ionic polarizabilities, and discusses their relevance to various applications with particular emphasis on cold-atom physics and the metrology of atomic frequency standards.Comment: Review paper, 44 page
    • …
    corecore