88 research outputs found

    The marketing effect

    Get PDF

    Recurrence of borderline ovarian tumors

    No full text
    Aim - to increase the efficiency of diagnosis and treatment of patients with recurrences of borderline ovarian tumors (BOT). 106 patients with BOT of stage I have been treated and clinically observed: the I group (82 patients, mean age - 38,9 +- 5,5 years), who were treated with standard surgical operation (panhysterectomy); the II group (24 patients, mean age - 30,3 +- 5,5 years), who underwent preserving surgery. The main method of treatment of patients with BOT is surgical. For patients of older age effective extension is panhysterectomy with the greater omentum resection. Further chemotherapy can be applied as the second stage of complex treatment in case of confounding factor of prognosis. Preserving treatment does not aggravate the indices of the survival rate among patients with BOT, which is confirmed by results of 5- and 10-years survival rate among patients after the preserving (I group) and standard surgery (II group): 87,4 and 79,2 % in the I group respectively, and 80,1 and 72,3 % in the II group respectively. The frequency of recurrence is higher in cases of bilateral affection of ovaries (IB stage), collapse of a capsule prior to the surgery. Sonography is a highly informative method of diagnostics of BOT relapse with its sensitivity 83,5 %, specifity - 64 %, favorable prognostic possibility - 56 %, unfavorable prognostic possibility - 66,4 %

    Influence of Titania Synthesized by Pulsed Laser Ablation on the State of Platinum during Ammonia Oxidation

    Get PDF
    A set of physicochemical methods, including X-ray photoelectron spectroscopy (XPS), X-ray diffraction, electron microscopy and X-ray absorption spectroscopy, was applied to study Pt/TiO2_{2} catalysts prepared by impregnation using a commercial TiO2_{2}-P25 support and a support produced by pulsed laser ablation in liquid (PLA). The Pt/TiO2_{2}-PLA catalysts showed increased thermal stability due to the localization of the highly dispersed platinum species at the intercrystalline boundaries of the support particles. In contrast, the Pt/TiO2_{2}-P25 catalysts were characterized by uniform distribution of the Pt species over the support. Analysis of Pt4f XP spectra shows that oxidized Pt2+^{2+} and Pt4+^{4+} species are formed in the Pt/TiO2_{2}-P25 catalysts, while the platinum oxidation state in the Pt/TiO2_{2}-PLA catalysts is lower due to stronger interaction of the active component with the support due to strong interaction via Pt-O-Ti bonds. The Pt4f XP spectra of the samples after reaction show Pt2+^{2+} and metallic platinum, which is the catalytically active species. The study of the catalytic properties in ammonia oxidation showed that, unlike the catalysts prepared with a commercial support, the Pt/TiO2_{2}-PLA samples show higher stability during catalysis and significantly higher selectivity to N2_{2} in a wide temperature range of 200–400 °C

    In situ probing of Pt/TiO2_{2} activity in low-temperature ammonia oxidation

    Get PDF
    The improvement of the low-temperature activity of the supported platinum catalysts in selective ammonia oxidation to nitrogen is still a challenging task. The recent developments in in situ/operando characterization techniques allows to bring new insight into the properties of the systems in correlation with their catalytic activity. In this work, near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and operando X-ray absorption spectroscopy (XAS) techniques were applied to study Pt/TiO2_{2} catalysts in ammonia oxidation (NH3_{3} + O2_{2} reaction). Several synthesis methods were used to obtain samples with different size of Pt particles, oxidation state of Pt, and morphology of the support. Metal platinum particles on titania prepared by pulsed laser ablation in liquids exhibited the highest activity at lower temperatures with the temperature of 50% conversion of NH3_{3} being 150 °C. The low-temperature activity of the catalysts synthesized by impregnation can be improved by the reductive pretreatment. NAP-XPS and operando XANES data do not show formation of PtOx_{x} surface layers or PtO/PtO2_{2} oxides during NH3_{3} + O2_{2} reaction. Despite the differences in the oxidation state of platinum in the as-prepared catalysts, their treatment in the reaction mixture results in the formation of metallic platinum particles, which can serve as centers for stabilization of the adsorbed oxygen species. Stabilization of the bulk platinum oxide structures in the Pt/TiO2_{2} catalysts seems to be less favorable due to the metal–support interaction

    Highly Dispersed Palladium on Carbon Nanofibers for Hydrogenation of Nitrocompounds to Amines

    Get PDF
    The effect of palladium dispersion and nature of the support on catalytic performance in hydrogenation of nitrobenzene to aniline was studied. It was shown that the type of the support and modification of palladium with phosphorus make it possible to stabilize highly dispersed (1.5-2 nm) palladium particles in the metallic state, thus increasing the efficiency of new catalysts

    Porous Nanocrystalline Silicon Supported Bimetallic Pd-Au Catalysts: Preparation, Characterization, and Direct Hydrogen Peroxide Synthesis.

    Get PDF
    Bimetallic Pd-Au catalysts were prepared on the porous nanocrystalline silicon (PSi) for the first time. The catalysts were tested in the reaction of direct hydrogen peroxide synthesis and characterized by standard structural and chemical techniques. It was shown that the Pd-Au/PSi catalyst prepared from conventional H2[PdCl4] and H[AuCl4] precursors contains monometallic Pd and a range of different Pd-Au alloy nanoparticles over the oxidized PSi surface. The PdAu2/PSi catalyst prepared from the [Pd(NH3)4][AuCl4]2 double complex salt (DCS) single-source precursor predominantly contains bimetallic Pd-Au alloy nanoparticles. For both catalysts the surface of bimetallic nanoparticles is Pd-enriched and contains palladium in Pd0 and Pd2+ states. Among the catalysts studied, the PdAu2/PSi catalyst was the most active and selective in the direct H2O2 synthesis with H2O2 productivity of 0.5 [Formula: see text] at selectivity of 50% and H2O2 concentration of 0.023 M in 0.03 M H2SO4-methanol solution after 5 h on stream at -10°C and atmospheric pressure. This performance is due to high activity in the H2O2 synthesis reaction and low activities in the undesirable H2O2 decomposition and hydrogenation reactions. Good performance of the PdAu2/PSi catalyst was associated with the major part of Pd in the catalyst being in the form of the bimetallic Pd-Au nanoparticles. Porous silicon was concluded to be a promising catalytic support for direct hydrogen peroxide synthesis due to its inertness with respect to undesirable side reactions, high thermal stability, and conductivity, possibility of safe operation at high temperatures and pressures and a well-established manufacturing process

    Society, State, Nation and the People in the Democratic South Africa: Two Decades of Illusions in The Practice of Public Administration, Development Planning and Management

    Get PDF
    The purpose of this article is to provide a conceptual argument in that as South Africa transcended beyond its democratic dispensation, an opportunity was missed in the process leading to transition to define a society, state, nation and the people for sustaining the democratic founding for purposes of public administration practice, development planning and management. That is done by critically portraying South Africa as a society, state, nation and locating the people for governance purposes within a democratic founding. It is argued that attempts are made to rewrite the history of the country with a view of bolstering its societal status, nation, state and the people without a profound context. South Africa has become what it is today due to its history that remains its defining factor if it has to locate its society, state, nation and the people. Having lost that opportunity during transition, governance has become so unwieldy in that those assigned with authority in the governance landscape, tend to confuse the roles of society, nation, state and the people and that eventually strain the fragile democracy by distorting the facts and the role of constitutional apparatus that are instrumental to the country’s democratic founding. The conclusion is rather pessimistic in that as long as these issues are not properly located within the governance landscape; the democratic dispensation remains vulnerable for demise just like other democracies within the African continent with the potential of the middle class hijacking it from the vulnerable poor majority being the people that public administration practice has to serve. DOI: 10.5901/mjss.2015.v6n2s1p61

    Efficacy and safety of alirocumab in reducing lipids and cardiovascular events.

    Get PDF

    Peculiarities of structure and morphology of copper-cerium nanopowders produced by laser ablation

    Get PDF
    Copper-cerium nanopowders CuOx–CeO2 (mass ratio Cu:Ce = 6:100) are prepared by mixing the dispersions of the copper and cerium oxides produced by the method of pulse laser ablation (PLA) in liquid, followed by drying. The initial dispersions of copper oxides were prepared by the method of PLA of a metal copper target in distilled water or 1% hydrogen peroxide solution, and those of cerium oxide – by PLA of metal cerium in distilled water. It is shown that ablation of copper in water and water solution of peroxide is followed by the formation of copper oxide particles of different morphologies and compositions (structure). It is established that no crystal phases of copper oxides are formed in the copper-cerium nanopowders produced from separate dispersions. Given this approach to forming copper-cerium nanoparticles, the oxidized copper is distributed in the form of a thin layer on the CeO2 surface, which is demonstrated by the results of investigation of these particles by the methods of high-resolution transmission electron microscopy and X-ray diffraction. The formation of a Cu–O–Ce interface at the interphase boundary gives rise to the formation of defects on the CeO2 surface, which is confirmed by the Raman spectroscopy. An investigation of the composition and electronic structure of the surface of CuOx nanoparticles and CuOx–CeO2 nanopowders performed by the method of X-ray photoelectronic spectroscopy reveals the presence of copper in the form of a combination of Cu (I) and Cu (II) with the prevailing contribution from a single-valence state for CuOx–CeO2 nanopowders, which could have resulted from the interaction between CuOx and CeO2 particles
    corecore