193 research outputs found

    The second Konus-Wind catalog of short gamma-ray bursts

    Full text link
    In this catalog, we present the results of a systematic study of 295 short gamma-ray bursts (GRBs) detected by Konus-Wind (KW) from 1994 to 2010. From the temporal and spectral analyses of the sample, we provide the burst durations, the spectral lags, the results of spectral fits with three model functions, the total energy fluences and the peak energy fluxes of the bursts. We discuss evidence found for an additional power-law spectral component and the presence of extended emission in a fraction of the KW short GRBs. Finally, we consider the results obtained in the context of the Type I (merger-origin) / Type II (collapsar-origin) classifications.Comment: Accepted to the Astrophysical Journal Supplement Series (7 Figures, 8 Tables

    Konus-Wind and Helicon-Coronas-F Observations of Solar Flares

    Full text link
    Results of solar flare observations obtained in the Konus-Wind experiment from November, 1994 to December, 2013 and in the Helicon Coronas-F experiment during its operation from 2001 to 2005, are presented. For the periods indicated Konus-Wind detected in the trigger mode 834 solar flares, and Helicon-Coronas-F detected more than 300 solar flares. A description of the instruments and data processing techniques are given. As an example, the analysis of the spectral evolution of the flares SOL2012-11-08T02:19 (M 1.7) and SOL2002-03-10T01:34 (C5.1) is made with the Konus-Wind data and the flare SOL2003-10-26T06:11 (X1.2) is analyzed in the 2.223 MeV deuterium line with the Helicon-Coronas-F data.Comment: Published version. A list of the Konus-Wind solar flare triggers and figures of their time profiles are available at http://www.ioffe.ru/LEA/Solar

    The ultraluminous GRB 110918A

    Full text link
    GRB 110918A is the brightest long GRB detected by Konus-WIND during its 19 years of continuous observations and the most luminous GRB ever observed since the beginning of the cosmological era in 1997. We report on the final IPN localization of this event and its detailed multiwavelength study with a number of space-based instruments. The prompt emission is characterized by a typical duration, a moderare EpeakE_{peak} of the time-integrated spectrum, and strong hard-to-soft evolution. The high observed energy fluence yields, at z=0.984, a huge isotropic-equivalent energy release Eiso=(2.1±0.1)×1054E_{iso}=(2.1\pm0.1)\times10^{54} erg. The record-breaking energy flux observed at the peak of the short, bright, hard initial pulse results in an unprecedented isotropic-equivalent luminosity Liso=(4.7±0.2)×1054L_{iso}=(4.7\pm0.2)\times10^{54}erg s1^{-1}. A tail of the soft gamma-ray emission was detected with temporal and spectral behavior typical of that predicted by the synchrotron forward-shock model. Swift/XRT and Swift/UVOT observed the bright afterglow from 1.2 to 48 days after the burst and revealed no evidence of a jet break. The post-break scenario for the afterglow is preferred from our analysis, with a hard underlying electron spectrum and ISM-like circumburst environment implied. We conclude that, among multiple reasons investigated, the tight collimation of the jet must have been a key ingredient to produce this unusually bright burst. The inferred jet opening angle of 1.7-3.4 deg results in reasonable values of the collimation-corrected radiated energy and the peak luminosity, which, however, are still at the top of their distributions for such tightly collimated events. We estimate a detection horizon for a similar ultraluminous GRB of z7.5z\sim7.5 for Konus-WIND, and z12z\sim12 for Swift/BAT, which stresses the importance of GRBs as probes of the early Universe.Comment: 22 pages, 20 figures, accepted for publication in Ap

    GROND coverage of the main peak of Gamma-Ray Burst 130925A

    Get PDF
    Prompt or early optical emission in gamma-ray bursts is notoriously difficult to measure, and observations of the dozen cases show a large variety of properties. Yet, such early emission promises to help us achieve a better understanding of the GRB emission process(es). We performed dedicated observations of the ultra-long duration (T90 about 7000 s) GRB 130925A in the optical/near-infrared with the 7-channel "Gamma-Ray Burst Optical and Near-infrared Detector" (GROND) at the 2.2m MPG/ESO telescope. We detect an optical/NIR flare with an amplitude of nearly 2 mag which is delayed with respect to the keV--MeV prompt emission by about 300--400 s. The decay time of this flare is shorter than the duration of the flare (500 s) or its delay. While we cannot offer a straightforward explanation, we discuss the implications of the flare properties and suggest ways toward understanding it.Comment: 9 pages, 9 figures, accepted for publ. in A&

    Investigation of Primordial Black Hole Bursts using Interplanetary Network Gamma-ray Bursts

    Full text link
    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating Primordial Black Holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to gamma-ray bursts using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short duration GRBs detected by the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 10^13-10^18 cm (7-10^5 AU) range, consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Assuming these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.Comment: Accepted to the Astrophysical Journal (9 Figures, 3 Tables

    The Interplanetary Network Supplement to the Fermi GBM Catalog of Cosmic Gamma-Ray Bursts

    Full text link
    We present Interplanetary Network (IPN) data for the gamma-ray bursts in the first Fermi Gamma-Ray Burst Monitor (GBM) catalog. Of the 491 bursts in that catalog, covering 2008 July 12 to 2010 July 11, 427 were observed by at least one other instrument in the 9-spacecraft IPN. Of the 427, the localizations of 149 could be improved by arrival time analysis (or triangulation). For any given burst observed by the GBM and one other distant spacecraft, triangulation gives an annulus of possible arrival directions whose half-width varies between about 0.4' and 32 degrees, depending on the intensity, time history, and arrival direction of the burst, as well as the distance between the spacecraft. We find that the IPN localizations intersect the 1 sigma GBM error circles in only 52% of the cases, if no systematic uncertainty is assumed for the latter. If a 6 degree systematic uncertainty is assumed and added in quadrature, the two localization samples agree about 87% of the time, as would be expected. If we then multiply the resulting error radii by a factor of 3, the two samples agree in slightly over 98% of the cases, providing a good estimate of the GBM 3 sigma error radius. The IPN 3 sigma error boxes have areas between about 1 square arcminute and 110 square degrees, and are, on the average, a factor of 180 smaller than the corresponding GBM localizations. We identify two bursts in the IPN/GBM sample that did not appear in the GBM catalog. In one case, the GBM triggered on a terrestrial gamma flash, and in the other, its origin was given as uncertain. We also discuss the sensitivity and calibration of the IPN.Comment: 52 pages, 12 figures, 4 tables. Revised version, resubmitted to the Astrophysical Journal Supplement Series following refereeing. Figures of the localizations in Table 3 may be found on the IPN website, at ssl.berkeley.edu/ipn3/YYMMDD, where YY, MM, and DD are the year, month, and day of the burst, sometimes with suffixes A or

    GRB 091024A and the Nature of Ultra-Long Gamma-Ray Bursts

    Get PDF
    We present a broadband study of gamma-ray burst (GRB) 091024A within the context of other ultra-long-duration GRBs. An unusually long burst detected by Konus-Wind (KW), Swift, and Fermi, GRB 091024A has prompt emission episodes covering ~1300 s, accompanied by bright and highly structured optical emission captured by various rapid-response facilities, including the 2 m autonomous robotic Faulkes North and Liverpool Telescopes, KAIT, S-LOTIS, and the Sonoita Research Observatory. We also observed the burst with 8 and 10 m class telescopes and determine the redshift to be z = 1.0924 ± 0.0004. We find no correlation between the optical and γ-ray peaks and interpret the optical light curve as being of external origin, caused by the reverse and forward shock of a highly magnetized jet (RB ≈ 100-200). Low-level emission is detected throughout the near-background quiescent period between the first two emission episodes of the KW data, suggesting continued central-engine activity; we discuss the implications of this ongoing emission and its impact on the afterglow evolution and predictions. We summarize the varied sample of historical GRBs with exceptionally long durations in gamma-rays (gsim1000 s) and discuss the likelihood of these events being from a separate population; we suggest ultra-long GRBs represent the tail of the duration distribution of the long GRB population
    corecore