17 research outputs found

    Survival of pacific salmons in the North Pacific in winter-spring season

    Get PDF
    Influence of several factors (water temperature, food supply, predatory, size of juveniles) on pacific salmons survival during wintering is considered on the data collected from the upper pelagic layer in surveys conducted by Pacific Fisheries Research Center (TINRO) in the North-West Pacific. There is highly unlikely that the temperature influences on fish mortality directly. There is no obvious proof of negative influence of the low temperature on food base of salmons, as well. The lowering of forage zooplankton biomass in the Subarctic Front zone in February-March is insufficient for the salmons starvation taking into account that the total abundance of planktivorous nekton is also lowered in this area and generally in the Subarctic waters in winter-spring, so the food supply cannot be considered as a crucial factor of the salmons survival. Seasonal changes with lowering of feeding intensity, lipid accumulation, and somatic growth in winter known for pacific salmons aren’t forced by poor food base but are a feature of their species-specific life strategy with cyclic changes of metabolism. Predators are not abundant in the Subarctic zone in winter, so the predatory also cannot cause the high mortality of salmons. Relationship between the size of juveniles and their mortality in winter is considered in detail for the Okhotsk Sea stocks of pink salmon and there is concluded that the size of juveniles cannot be a predictor of their year-classes return for spawning. Thus, any single factor doesn’t determine winter mortality of pacific salmons but their survival is likely determined by a complex interaction of abiotic and biotic factors

    Sequence comparison of prefrontal cortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two strains of the silver fox (<it>Vulpes vulpes</it>), with markedly different behavioral phenotypes, have been developed by long-term selection for behavior. Foxes from the tame strain exhibit friendly behavior towards humans, paralleling the sociability of canine puppies, whereas foxes from the aggressive strain are defensive and exhibit aggression to humans. To understand the genetic differences underlying these behavioral phenotypes fox-specific genomic resources are needed.</p> <p>Results</p> <p>cDNA from mRNA from pre-frontal cortex of a tame and an aggressive fox was sequenced using the Roche 454 FLX Titanium platform (> 2.5 million reads & 0.9 Gbase of tame fox sequence; >3.3 million reads & 1.2 Gbase of aggressive fox sequence). Over 80% of the fox reads were assembled into contigs. Mapping fox reads against the fox transcriptome assembly and the dog genome identified over 30,000 high confidence fox-specific SNPs. Fox transcripts for approximately 14,000 genes were identified using SwissProt and the dog RefSeq databases. An at least 2-fold expression difference between the two samples (p < 0.05) was observed for 335 genes, fewer than 3% of the total number of genes identified in the fox transcriptome.</p> <p>Conclusions</p> <p>Transcriptome sequencing significantly expanded genomic resources available for the fox, a species without a sequenced genome. In a very cost efficient manner this yielded a large number of fox-specific SNP markers for genetic studies and provided significant insights into the gene expression profile of the fox pre-frontal cortex; expression differences between the two fox samples; and a catalogue of potentially important gene-specific sequence variants. This result demonstrates the utility of this approach for developing genomic resources in species with limited genomic information.</p

    A meiotic linkage map of the silver fox, aligned and compared to the canine genome

    Get PDF
    A meiotic linkage map is essential for mapping traits of interest and is often the first step toward understanding a cryptic genome. Specific strains of silver fox (a variant of the red fox, Vulpes vulpes), which segregate behavioral and morphological phenotypes, create a need for such a map. One such strain, selected for docility, exhibits friendly dog-like responses to humans, in contrast to another strain selected for aggression. Development of a fox map is facilitated by the known cytogenetic homologies between the dog and fox, and by the availability of high resolution canine genome maps and sequence data. Furthermore, the high genomic sequence identity between dog and fox allows adaptation of canine microsatellites for genotyping and meiotic mapping in foxes. Using 320 such markers, we have constructed the first meiotic linkage map of the fox genome. The resulting sex-averaged map covers 16 fox autosomes and the X chromosome with an average inter-marker distance of 7.5 cM. The total map length corresponds to 1480.2 cM. From comparison of sex-averaged meiotic linkage maps of the fox and dog genomes, suppression of recombination in pericentromeric regions of the metacentric fox chromosomes was apparent, relative to the corresponding segments of acrocentric dog chromosomes. Alignment of the fox meiotic map against the 7.6x canine genome sequence revealed high conservation of marker order between homologous regions of the two species. The fox meiotic map provides a critical tool for genetic studies in foxes and identification of genetic loci and genes implicated in fox domestication

    Genes located inside or within 50,000 bp from start and end of the multi SNP clusters in the dog genome.

    No full text
    <p>Cluster numbers refer to the numbering from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0127013#pone.0127013.t002" target="_blank">Table 2</a>.</p><p>Genes located inside or within 50,000 bp from start and end of the multi SNP clusters in the dog genome.</p

    Principal component analysis.

    No full text
    <p>Principal component analysis of SNP data for 20 tame and 20 aggressive foxes. 8,437 SNPs with genotypes available for all individuals were used in this analysis. Aggressive individuals are represented by red dots, tame individuals are represented by green triangles. PC1 is plotted on the x-axis, PC2 is plotted on the y-axis.</p

    Estimation of population structure using STRUCTURE.

    No full text
    <p>Cluster analysis of fox genotypes was performed at four values of K (2, 3, 4, and 5) without population information. The numbers of assumed clusters are indicated on the y-axis. The population origin of individuals is indicated on x-axis. On each graph the individuals are listed in the order obtained at K = 3. Each individual is represented by a bar that is segmented into colors based on the assignment into inferred clusters given the assumption of K populations. The length of the colored segment is the estimated proportion of the individual’s genome belonging to that cluster. The analysis was run in 8 replicates for each K, the replicate with the highest likelihood is shown. The genetic structure analysis clearly differentiated the tame population from the aggressive one and did not reveal significant population stratification within the tame population at every K tested. In contrast, the population stratification within the aggressive population became apparent at K = 3.</p
    corecore