31 research outputs found

    The Cation Exchange Resin Leaching of Zinc from Zinc Cake and Zinc Calcine

    Get PDF
    Π¦ΠΈΠ½ΠΊΠΎΠ²Ρ‹ΠΉ ΠΊΠ΅ΠΊ, ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠΉΡΡ ΠΏΡ€ΠΈ кислотном Π²Ρ‹Ρ‰Π΅Π»Π°Ρ‡ΠΈΠ²Π°Π½ΠΈΠΈ Ρ†ΠΈΠ½ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠ³Π°Ρ€ΠΊΠ° Π½Π° ПАО Β«Π¦ΠΈΠ½ΠΊΠΎΠ²Ρ‹ΠΉ Π·Π°Π²ΠΎΠ΄Β» (ЧСлябинск), ΠΈΠΌΠ΅Π΅Ρ‚ слоТный ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ состав. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ„Π°Π·Ρ‹ Π² ΠΊΠ΅ΠΊΠ΅ Π² основном прСдставлСны Ρ„Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΠΌ Ρ†ΠΈΠ½ΠΊΠ°, ΡΡƒΠ»ΡŒΡ„Π°Ρ‚ΠΎΠΌ Ρ†ΠΈΠ½ΠΊΠ°, ΠΏΠ»ΡŽΠΌΠ±ΠΎΡΡ€ΠΎΠ·ΠΈΡ‚ΠΎΠΌ ΠΈ оксидом ΠΌΠ΅Π΄ΠΈ. ΠšΠ°Ρ‚ΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΎΠ΅ Π²Ρ‹Ρ‰Π΅Π»Π°Ρ‡ΠΈΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² ΠΈΠ· Ρ†ΠΈΠ½ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠ³Π°Ρ€ΠΊΠ° ΠΈ Ρ†ΠΈΠ½ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠ΅ΠΊΠ° (ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Π½Π° стадии кислотного выщСлачивания) являСтся пСрспСктивным ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π² качСствС Ρ€Π΅Π°Π³Π΅Π½Ρ‚Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использован ΠΈΠΎΠ½ΠΈΡ‚ ΠšΠ£β€‘2–8 Π² Н‑формС. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ установлСно, Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ ZnFe2O4 (60 %) ΠΌΠΎΠΆΠ΅Ρ‚ Ρ€Π°ΡΡ‚Π²ΠΎΡ€ΡΡ‚ΡŒΡΡ Π² мягких условиях ΠΏΡ€ΠΈ рН=1 ΠΈ 25 Β°C, Π° ΠΎΠ±Ρ‰ΠΈΠΉ Ρ†ΠΈΠ½ΠΊ, ΠΈΠ·Π²Π»Π΅ΠΊΠ°Π΅ΠΌΡ‹ΠΉ ΠΈΠ· ΠΎΠ³Π°Ρ€ΠΊΠ° ΠΏΡ€ΠΈ Π²Ρ‹Ρ‰Π΅Π»Π°Ρ‡ΠΈΠ²Π°Π½ΠΈΠΈ ΠΊΠ°Ρ‚ΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΎΠΉ смолой, достигаСт 98 %. ΠΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ†ΠΈΠ½ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠ΅ΠΊΠ° Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Ρƒ синтСзированного ΠΎΠ±Ρ€Π°Π·Ρ†Π° Ρ„Π΅Ρ€Ρ€ΠΈΡ‚Π° Ρ†ΠΈΠ½ΠΊΠ°The zinc ferrite cake, which is generated during the wet extraction of zinc calcine at PJSC Zinc Plant (Chelyabinsk) has a complex mineral composition. The main mineral phases in the cake are basically represented by zinc ferrite, zinc sulfate, plumbojarozite and copper oxide. The cation-exchange resin leaching of metals from zinc calcine and zinc cake (obtained at the acid leaching stage) is a promising method in which KU‑2–8 ion exchanger in H‑form can be used as reagent. In the paper it was found that a significant part of the ZnFe2O4 (60 %) can be dissolved under mild conditions at pH=1 and 25 Β°C while the total zinc recovered from the calcine by the cation-exchange resin leaching reaches 98 %. The activity of the zinc cake is higher than that of the synthesized zinc ferrite sampl

    Reaction-ion-exchange Techniques Recovery of Valuable Components from Mineral and Technogenic Raw Materials and Production of the Dispersed Substances

    Get PDF
    Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π΄Π²Π° совмСщСнных Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎ-ΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½Ρ‹Ρ… процСсса, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ органичСскиС ΠΈΠΎΠ½ΠΈΡ‚Ρ‹: ΠΊΠ°Ρ‚ΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΎΠ΅ Π²Ρ‹Ρ‰Π΅Π»Π°Ρ‡ΠΈΠ²Π°Π½ΠΈΠ΅ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² ΠΈΠ· ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΡΡ‹Ρ€ΡŒΡ с использованиСм ΠΊΠ°Ρ‚ΠΈΠΎΠ½ΠΈΡ‚Π° Π² Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΈ Π°Π½ΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ осаТдСния ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² Π² Π²ΠΈΠ΄Π΅ малорастворимых соСдинСний с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π°Π½ΠΈΠΎΠ½ΠΈΡ‚Π° Π² гидроксидной ΠΈ солСвых Ρ„ΠΎΡ€ΠΌΠ°Ρ…. ВозмоТности ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ раздСлСния ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ², исходя ΠΈΠ· ΠΈΡ… оксидов, гидроксидов, ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ², силикатов, Π° Ρ‚Π°ΠΊΠΆΠ΅ синтСза гидроксидов, ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚ΠΎΠ², оксалатов никСля, ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ²Two different techniques of integrated ion exchange technology processes were researched. The first is recovery of metals from mineral raw materials, intermediate substances and waste products by cation exchange resins in H-form. The second is synthesis of dispersed materials utilizing anion exchange resins in OH-, CO3- , C2O4-forms. The constants of dissolution (leaching) and precipitation using ion exchange resin were determined. These techniques advantages before traditional leaching and precipitation methods are discussed. Application of methods is illustrated by cases of metal separation from its oxides, hydroxides, sulfides, silicates and synthesis different dispersed materials: cobalt and nickel hydroxides, oxalates, base carbonates and others. Mechanism of these processes and different factors influence on the processes are discusse

    Effects of Inorganic Stabilizers on the Formation of Copper Nanoparticles by Reduction of Copper (II) Ions with Sodium Borohydride Solutions

    No full text
    ИсслСдован процСсс восстановлСния ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅Π΄ΠΈ (II) Π±ΠΎΡ€ΠΎΠ³ΠΈΠ΄Ρ€ΠΈΠ΄ΠΎΠΌ натрия Π² Π²ΠΎΠ΄Π½Ρ‹Ρ… растворах Π² присутствии стабилизаторов (Ρ†ΠΈΡ‚Ρ€Π°Ρ‚ натрия, Π½ΠΈΡ‚Ρ€Π°Ρ‚ натрия, Π°ΠΌΠΈΠ½ΠΎΠ°Ρ†Π΅Ρ‚Π°Ρ‚ натрия, KCl, KClO3, KBr, KBrO3, KJ, KJO3). Для систСмы Cu2+-NaBH4-KJO3 ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΎ влияниС ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ Ρ€Π΅Π°Π³Π΅Π½Ρ‚ΠΎΠ², рН ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π½Π° Π²Ρ‹Ρ…ΠΎΠ΄ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π° ΠΈ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π³ΠΈΠ΄Ρ€ΠΎΠ·ΠΎΠ»Π΅ΠΉ ΠΏΡ€ΠΈ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π΅ с Π²ΠΎΠ·Π΄ΡƒΡ…ΠΎΠΌ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ НЧ исслСдованы ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ оптичСской спСктроскопии, ПЭМ, Π Π€Π­Π‘ ΠΈ ОЭБThe process of copper (II) sulfate reduction by sodium borohydride with inorganic stabilizers (sodium citrate, sodium nitrate, sodium aminoacetate, KCl, KClO3, KBr, KBrO3, KI, KIO3) was investigated. The effect of reaction conditions (copper salt and sodium borohydride concentrations, their molar ratio, pH, temperature) on the formation copper nanoparticles, its yield and stability in aqueous solution were examined for system Cu2+-NaBH4-KIO3. The products were studied by UV-vis spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscop

    Effects of Inorganic Stabilizers on the Formation of Copper Nanoparticles by Reduction of Copper (II) Ions with Sodium Borohydride Solutions

    No full text
    ИсслСдован процСсс восстановлСния ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅Π΄ΠΈ (II) Π±ΠΎΡ€ΠΎΠ³ΠΈΠ΄Ρ€ΠΈΠ΄ΠΎΠΌ натрия Π² Π²ΠΎΠ΄Π½Ρ‹Ρ… растворах Π² присутствии стабилизаторов (Ρ†ΠΈΡ‚Ρ€Π°Ρ‚ натрия, Π½ΠΈΡ‚Ρ€Π°Ρ‚ натрия, Π°ΠΌΠΈΠ½ΠΎΠ°Ρ†Π΅Ρ‚Π°Ρ‚ натрия, KCl, KClO3, KBr, KBrO3, KJ, KJO3). Для систСмы Cu2+-NaBH4-KJO3 ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΎ влияниС ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ Ρ€Π΅Π°Π³Π΅Π½Ρ‚ΠΎΠ², рН ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π½Π° Π²Ρ‹Ρ…ΠΎΠ΄ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π° ΠΈ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π³ΠΈΠ΄Ρ€ΠΎΠ·ΠΎΠ»Π΅ΠΉ ΠΏΡ€ΠΈ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π΅ с Π²ΠΎΠ·Π΄ΡƒΡ…ΠΎΠΌ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ НЧ исслСдованы ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ оптичСской спСктроскопии, ПЭМ, Π Π€Π­Π‘ ΠΈ ОЭБThe process of copper (II) sulfate reduction by sodium borohydride with inorganic stabilizers (sodium citrate, sodium nitrate, sodium aminoacetate, KCl, KClO3, KBr, KBrO3, KI, KIO3) was investigated. The effect of reaction conditions (copper salt and sodium borohydride concentrations, their molar ratio, pH, temperature) on the formation copper nanoparticles, its yield and stability in aqueous solution were examined for system Cu2+-NaBH4-KIO3. The products were studied by UV-vis spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscop

    Cyclo[18]carbon Formation from C(18)Br(6) and C18(CO)(6) Precursors

    No full text
    Although cyclo[18]carbon has been isolated experimentally from two precursors, C18Br6 and C-18(CO)(6), no reaction mechanisms have yet been explored. Herein, we provide insight into the mechanism behind debromination and decarbon-ylation. Both neutral precursors demonstrate high activation barriers of similar to 2.3 eV, while the application of an electric field can lower the barriers by 0.1-0.2 eV. The barrier energy of the anion-radicals is found to be significantly lower for C18Br6 compared to C-18(CO)(6), confirming a considerably higher yield of cylco[18] carbon when the C18Br6 precursor is used. Elongation of the C-Br bond in the anion-radical confirms its predissociation condition. Natural bonding orbital analysis shows that the stability of C-Br and C-CO bonds in the anion-radicals is lower compared to their neutral species, indicating a possible higher yield. The applied analysis provides crucial details regarding the reaction yield of cyclo[18]carbon and can serve as a general scheme for tuning reaction conditions for other organic precursors.Funding Agencies|Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0008]; Swedish Research Council [2020-04600, 2018-05973]; Swedish National Infrastructure for Computing at the National Supercomputer Centre of Linkoeping University [SNIC 2021-3-22, SNIC 2022-5-103]</p

    The Synthesis of cobalt Oxlate (II) by Use Anion Exchanger AV-17-8 in Б2О4 - form

    No full text
    Π˜Π·ΡƒΡ‡Π΅Π½ процСсс осаТдСния оксалата ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° ΠΈΠ· Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… солСй ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ сильноосновного Π°Π½ΠΈΠΎΠ½ΠΈΡ‚Π° АВ-17-8 Π² Π‘2О4 - Ρ„ΠΎΡ€ΠΌΠ΅. УстановлСно, Ρ‡Ρ‚ΠΎ наибольший Π²Ρ‹Ρ…ΠΎΠ΄ оксалата ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° Π² Π²ΠΈΠ΄Π΅ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„Π°Π·Ρ‹ (56 %) Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ Π² случаС использования раствора ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π° ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π°, ΠΈΠ· Π½ΠΈΡ‚Ρ€Π°Ρ‚Π½Ρ‹Ρ… растворов Π²Ρ‹Ρ…ΠΎΠ΄ составляСт 35 %. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ исслСдованиС ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… осадков химичСским Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ, РЀА, ВГА ΠΈ ИК-спСктроскопиСй. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ Π½Π΅ содСрТит примСсных Π°Π½ΠΈΠΎΠ½ΠΎΠ² ΠΈ ΠΊΠ°Ρ‚ΠΈΠΎΠ½ΠΎΠ², Π΅Π³ΠΎ состав соотвСтствуСт Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Π‘ΠΎΠ‘2О4Β·2Н2О, Π° структура - орторомбичСской ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ оксалата ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° (II).The synthesis of cobalt oxalate (II) by use strong based anion resin AV-17-8 in Π‘2О4 - form has been investigated. Cobalt oxalate (II) was obtained in a yield (56 %) with sulfate solution as compared with nitrate solutions (35 %). Synthesis products were investigated by chemical analysis, TGA, X-Ray diffraction and IR-spectroscopy. The chemical composition of synthesized products is Π‘ΠΎΠ‘2О4·Н2О. It is founded that all products correspond orthorhombic modification of cobalt oxalate (II) impurity ions-free

    Reaction-ion-exchange Techniques Recovery of Valuable Components from Mineral and Technogenic Raw Materials and Production of the Dispersed Substances

    No full text
    Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π΄Π²Π° совмСщСнных Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎ-ΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½Ρ‹Ρ… процСсса, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ органичСскиС ΠΈΠΎΠ½ΠΈΡ‚Ρ‹: ΠΊΠ°Ρ‚ΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΎΠ΅ Π²Ρ‹Ρ‰Π΅Π»Π°Ρ‡ΠΈΠ²Π°Π½ΠΈΠ΅ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² ΠΈΠ· ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΡΡ‹Ρ€ΡŒΡ с использованиСм ΠΊΠ°Ρ‚ΠΈΠΎΠ½ΠΈΡ‚Π° Π² Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΈ Π°Π½ΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ осаТдСния ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² Π² Π²ΠΈΠ΄Π΅ малорастворимых соСдинСний с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π°Π½ΠΈΠΎΠ½ΠΈΡ‚Π° Π² гидроксидной ΠΈ солСвых Ρ„ΠΎΡ€ΠΌΠ°Ρ…. ВозмоТности ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ раздСлСния ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ², исходя ΠΈΠ· ΠΈΡ… оксидов, гидроксидов, ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ², силикатов, Π° Ρ‚Π°ΠΊΠΆΠ΅ синтСза гидроксидов, ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚ΠΎΠ², оксалатов никСля, ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ²Two different techniques of integrated ion exchange technology processes were researched. The first is recovery of metals from mineral raw materials, intermediate substances and waste products by cation exchange resins in H-form. The second is synthesis of dispersed materials utilizing anion exchange resins in OH-, CO3- , C2O4-forms. The constants of dissolution (leaching) and precipitation using ion exchange resin were determined. These techniques advantages before traditional leaching and precipitation methods are discussed. Application of methods is illustrated by cases of metal separation from its oxides, hydroxides, sulfides, silicates and synthesis different dispersed materials: cobalt and nickel hydroxides, oxalates, base carbonates and others. Mechanism of these processes and different factors influence on the processes are discusse

    The Synthesis of cobalt Oxlate (II) by Use Anion Exchanger AV-17-8 in Б2О4 - form

    No full text
    Π˜Π·ΡƒΡ‡Π΅Π½ процСсс осаТдСния оксалата ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° ΠΈΠ· Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… солСй ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ сильноосновного Π°Π½ΠΈΠΎΠ½ΠΈΡ‚Π° АВ-17-8 Π² Π‘2О4 - Ρ„ΠΎΡ€ΠΌΠ΅. УстановлСно, Ρ‡Ρ‚ΠΎ наибольший Π²Ρ‹Ρ…ΠΎΠ΄ оксалата ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° Π² Π²ΠΈΠ΄Π΅ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„Π°Π·Ρ‹ (56 %) Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ Π² случаС использования раствора ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π° ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π°, ΠΈΠ· Π½ΠΈΡ‚Ρ€Π°Ρ‚Π½Ρ‹Ρ… растворов Π²Ρ‹Ρ…ΠΎΠ΄ составляСт 35 %. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ исслСдованиС ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… осадков химичСским Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ, РЀА, ВГА ΠΈ ИК-спСктроскопиСй. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ Π½Π΅ содСрТит примСсных Π°Π½ΠΈΠΎΠ½ΠΎΠ² ΠΈ ΠΊΠ°Ρ‚ΠΈΠΎΠ½ΠΎΠ², Π΅Π³ΠΎ состав соотвСтствуСт Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Π‘ΠΎΠ‘2О4Β·2Н2О, Π° структура - орторомбичСской ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ оксалата ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° (II).The synthesis of cobalt oxalate (II) by use strong based anion resin AV-17-8 in Π‘2О4 - form has been investigated. Cobalt oxalate (II) was obtained in a yield (56 %) with sulfate solution as compared with nitrate solutions (35 %). Synthesis products were investigated by chemical analysis, TGA, X-Ray diffraction and IR-spectroscopy. The chemical composition of synthesized products is Π‘ΠΎΠ‘2О4·Н2О. It is founded that all products correspond orthorhombic modification of cobalt oxalate (II) impurity ions-free

    Electronic structure and theoretical exfoliation of non-van der Waals carbonates into low-dimensional materials : A case of Y2(CO3)3

    No full text
    The unique properties of two-dimensional (2D) materials make them highly versatile for a wide range of applications. Recently, low-dimensional structures obtained from bulk non-van der Waals materials have received particular interest. Yttrium carbonate is an example of such materials which hold the potential for creating 2D structures, however, its fundamental properties have been investigated only rarely. In this work, we demonstrate the possibility of obtaining 2D yttrium carbonate with the tengerite-(Y) structure. The electronic and optical properties of both bulk and two-dimensional Y2(CO3)3 &amp; sdot;2H2O 2 (CO 3 ) 3 &amp; sdot; 2H 2 O are investigated using the PBE and HSE06 functionals. While the bulk material is predicted with a bandgap of 7.06 eV at the HSE06 level, the 2D Y2(CO3)3 &amp; sdot;2H2O 2 (CO 3 ) 3 &amp; sdot; 2H 2 O material possesses a bandgap of, untypically, 0.4 eV narrower than the bulk material due to surface effects and different stoichiometry. The optical properties reveal that both the bulk and 2D forms are transparent in the visible and near-UV regions positioning them as promising candidates for various optical applications including doping-induced luminescent devices
    corecore