31 research outputs found
The Cation Exchange Resin Leaching of Zinc from Zinc Cake and Zinc Calcine
Π¦ΠΈΠ½ΠΊΠΎΠ²ΡΠΉ ΠΊΠ΅ΠΊ, ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΠΉΡΡ ΠΏΡΠΈ ΠΊΠΈΡΠ»ΠΎΡΠ½ΠΎΠΌ Π²ΡΡΠ΅Π»Π°ΡΠΈΠ²Π°Π½ΠΈΠΈ ΡΠΈΠ½ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠ³Π°ΡΠΊΠ°
Π½Π° ΠΠΠ Β«Π¦ΠΈΠ½ΠΊΠΎΠ²ΡΠΉ Π·Π°Π²ΠΎΠ΄Β» (Π§Π΅Π»ΡΠ±ΠΈΠ½ΡΠΊ), ΠΈΠΌΠ΅Π΅Ρ ΡΠ»ΠΎΠΆΠ½ΡΠΉ ΠΌΠΈΠ½Π΅ΡΠ°Π»ΡΠ½ΡΠΉ ΡΠΎΡΡΠ°Π². ΠΡΠ½ΠΎΠ²Π½ΡΠ΅
ΠΌΠΈΠ½Π΅ΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠ°Π·Ρ Π² ΠΊΠ΅ΠΊΠ΅ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅ΡΡΠΈΡΠΎΠΌ ΡΠΈΠ½ΠΊΠ°, ΡΡΠ»ΡΡΠ°ΡΠΎΠΌ ΡΠΈΠ½ΠΊΠ°,
ΠΏΠ»ΡΠΌΠ±ΠΎΡΡΠΎΠ·ΠΈΡΠΎΠΌ ΠΈ ΠΎΠΊΡΠΈΠ΄ΠΎΠΌ ΠΌΠ΅Π΄ΠΈ. ΠΠ°ΡΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΎΠ΅ Π²ΡΡΠ΅Π»Π°ΡΠΈΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² ΠΈΠ· ΡΠΈΠ½ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠ³Π°ΡΠΊΠ°
ΠΈ ΡΠΈΠ½ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠ΅ΠΊΠ° (ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π½Π° ΡΡΠ°Π΄ΠΈΠΈ ΠΊΠΈΡΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ Π²ΡΡΠ΅Π»Π°ΡΠΈΠ²Π°Π½ΠΈΡ) ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ΅Π°Π³Π΅Π½ΡΠ° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ ΠΈΠΎΠ½ΠΈΡ ΠΠ£β2β8 Π² ΠβΡΠΎΡΠΌΠ΅. Π ΡΠ°Π±ΠΎΡΠ΅
ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΡΠ°ΡΡΡ ZnFe2O4 (60 %) ΠΌΠΎΠΆΠ΅Ρ ΡΠ°ΡΡΠ²ΠΎΡΡΡΡΡΡ Π² ΠΌΡΠ³ΠΊΠΈΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΠΏΡΠΈ ΡΠ=1 ΠΈ 25 Β°C, Π° ΠΎΠ±ΡΠΈΠΉ ΡΠΈΠ½ΠΊ, ΠΈΠ·Π²Π»Π΅ΠΊΠ°Π΅ΠΌΡΠΉ ΠΈΠ· ΠΎΠ³Π°ΡΠΊΠ° ΠΏΡΠΈ Π²ΡΡΠ΅Π»Π°ΡΠΈΠ²Π°Π½ΠΈΠΈ ΠΊΠ°ΡΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΎΠΉ
ΡΠΌΠΎΠ»ΠΎΠΉ, Π΄ΠΎΡΡΠΈΠ³Π°Π΅Ρ 98 %. ΠΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠΈΠ½ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠ΅ΠΊΠ° Π²ΡΡΠ΅, ΡΠ΅ΠΌ Ρ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ°Π·ΡΠ°
ΡΠ΅ΡΡΠΈΡΠ° ΡΠΈΠ½ΠΊΠ°The zinc ferrite cake, which is generated during the wet extraction of zinc calcine at PJSC Zinc Plant (Chelyabinsk) has a complex mineral composition. The main mineral phases in the cake are basically represented by zinc ferrite, zinc sulfate, plumbojarozite and copper oxide. The cation-exchange resin leaching of metals from zinc calcine and zinc cake (obtained at the acid leaching stage) is a promising method in which KUβ2β8 ion exchanger in Hβform can be used as reagent. In the paper it was found that a significant part of the ZnFe2O4 (60 %) can be dissolved under mild conditions at pH=1 and 25 Β°C while the total zinc recovered from the calcine by the cation-exchange resin leaching reaches 98 %. The activity of the zinc cake is higher than that of the synthesized zinc ferrite sampl
Reaction-ion-exchange Techniques Recovery of Valuable Components from Mineral and Technogenic Raw Materials and Production of the Dispersed Substances
Π Π°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ Π΄Π²Π° ΡΠΎΠ²ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎ-ΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΡΡ
ΠΏΡΠΎΡΠ΅ΡΡΠ°, Π² ΠΊΠΎΡΠΎΡΡΡ
ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡΡΡ ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈΠΎΠ½ΠΈΡΡ: ΠΊΠ°ΡΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΎΠ΅ Π²ΡΡΠ΅Π»Π°ΡΠΈΠ²Π°Π½ΠΈΠ΅ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ²
ΠΈΠ· ΠΌΠΈΠ½Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈ ΡΠ΅Ρ
Π½ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΡΡΡΡΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΊΠ°ΡΠΈΠΎΠ½ΠΈΡΠ° Π² Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π½ΠΎΠΉ ΡΠΎΡΠΌΠ΅ ΠΈ
Π°Π½ΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΡ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² Π² Π²ΠΈΠ΄Π΅ ΠΌΠ°Π»ΠΎΡΠ°ΡΡΠ²ΠΎΡΠΈΠΌΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ
Π°Π½ΠΈΠΎΠ½ΠΈΡΠ° Π² Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ΄Π½ΠΎΠΉ ΠΈ ΡΠΎΠ»Π΅Π²ΡΡ
ΡΠΎΡΠΌΠ°Ρ
. ΠΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΈΠ»Π»ΡΡΡΡΠΈΡΡΡΡΡΡ
ΠΏΡΠΈΠΌΠ΅ΡΠ°ΠΌΠΈ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ², ΠΈΡΡ
ΠΎΠ΄Ρ ΠΈΠ· ΠΈΡ
ΠΎΠΊΡΠΈΠ΄ΠΎΠ², Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ΄ΠΎΠ², ΡΡΠ»ΡΡΠΈΠ΄ΠΎΠ², ΡΠΈΠ»ΠΈΠΊΠ°ΡΠΎΠ², Π°
ΡΠ°ΠΊΠΆΠ΅ ΡΠΈΠ½ΡΠ΅Π·Π° Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ΄ΠΎΠ², ΠΊΠ°ΡΠ±ΠΎΠ½Π°ΡΠΎΠ², ΠΎΠΊΡΠ°Π»Π°ΡΠΎΠ² Π½ΠΈΠΊΠ΅Π»Ρ, ΠΊΠΎΠ±Π°Π»ΡΡΠ° ΠΈ Π΄ΡΡΠ³ΠΈΡ
ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ²Two different techniques of integrated ion exchange technology processes were researched.
The first is recovery of metals from mineral raw materials, intermediate substances and waste
products by cation exchange resins in H-form. The second is synthesis of dispersed materials
utilizing anion exchange resins in OH-, CO3- , C2O4-forms. The constants of dissolution (leaching)
and precipitation using ion exchange resin were determined. These techniques advantages
before traditional leaching and precipitation methods are discussed. Application of methods
is illustrated by cases of metal separation from its oxides, hydroxides, sulfides, silicates and
synthesis different dispersed materials: cobalt and nickel hydroxides, oxalates, base carbonates
and others. Mechanism of these processes and different factors influence on the processes are
discusse
Effects of Inorganic Stabilizers on the Formation of Copper Nanoparticles by Reduction of Copper (II) Ions with Sodium Borohydride Solutions
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ ΠΏΡΠΎΡΠ΅ΡΡ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅Π΄ΠΈ (II) Π±ΠΎΡΠΎΠ³ΠΈΠ΄ΡΠΈΠ΄ΠΎΠΌ Π½Π°ΡΡΠΈΡ Π² Π²ΠΎΠ΄Π½ΡΡ
ΡΠ°ΡΡΠ²ΠΎΡΠ°Ρ
Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·Π°ΡΠΎΡΠΎΠ² (ΡΠΈΡΡΠ°Ρ Π½Π°ΡΡΠΈΡ, Π½ΠΈΡΡΠ°Ρ Π½Π°ΡΡΠΈΡ, Π°ΠΌΠΈΠ½ΠΎΠ°ΡΠ΅ΡΠ°Ρ Π½Π°ΡΡΠΈΡ, KCl,
KClO3, KBr, KBrO3, KJ, KJO3). ΠΠ»Ρ ΡΠΈΡΡΠ΅ΠΌΡ Cu2+-NaBH4-KJO3 ΠΈΠ·ΡΡΠ΅Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ
ΡΠ΅Π°Π³Π΅Π½ΡΠΎΠ², ΡΠ ΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ Π½Π° Π²ΡΡ
ΠΎΠ΄ ΠΏΡΠΎΠ΄ΡΠΊΡΠ° ΠΈ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Π³ΠΈΠ΄ΡΠΎΠ·ΠΎΠ»Π΅ΠΉ ΠΏΡΠΈ
ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ΅ Ρ Π²ΠΎΠ·Π΄ΡΡ
ΠΎΠΌ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΠ§ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ,
ΠΠΠ, Π Π€ΠΠ‘ ΠΈ ΠΠΠ‘The process of copper (II) sulfate reduction by sodium borohydride with inorganic stabilizers (sodium
citrate, sodium nitrate, sodium aminoacetate, KCl, KClO3, KBr, KBrO3, KI, KIO3) was investigated. The
effect of reaction conditions (copper salt and sodium borohydride concentrations, their molar ratio,
pH, temperature) on the formation copper nanoparticles, its yield and stability in aqueous solution
were examined for system Cu2+-NaBH4-KIO3. The products were studied by UV-vis spectroscopy,
X-ray photoelectron spectroscopy, transmission electron microscop
Effects of Inorganic Stabilizers on the Formation of Copper Nanoparticles by Reduction of Copper (II) Ions with Sodium Borohydride Solutions
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ ΠΏΡΠΎΡΠ΅ΡΡ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅Π΄ΠΈ (II) Π±ΠΎΡΠΎΠ³ΠΈΠ΄ΡΠΈΠ΄ΠΎΠΌ Π½Π°ΡΡΠΈΡ Π² Π²ΠΎΠ΄Π½ΡΡ
ΡΠ°ΡΡΠ²ΠΎΡΠ°Ρ
Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·Π°ΡΠΎΡΠΎΠ² (ΡΠΈΡΡΠ°Ρ Π½Π°ΡΡΠΈΡ, Π½ΠΈΡΡΠ°Ρ Π½Π°ΡΡΠΈΡ, Π°ΠΌΠΈΠ½ΠΎΠ°ΡΠ΅ΡΠ°Ρ Π½Π°ΡΡΠΈΡ, KCl,
KClO3, KBr, KBrO3, KJ, KJO3). ΠΠ»Ρ ΡΠΈΡΡΠ΅ΠΌΡ Cu2+-NaBH4-KJO3 ΠΈΠ·ΡΡΠ΅Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ
ΡΠ΅Π°Π³Π΅Π½ΡΠΎΠ², ΡΠ ΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ Π½Π° Π²ΡΡ
ΠΎΠ΄ ΠΏΡΠΎΠ΄ΡΠΊΡΠ° ΠΈ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Π³ΠΈΠ΄ΡΠΎΠ·ΠΎΠ»Π΅ΠΉ ΠΏΡΠΈ
ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ΅ Ρ Π²ΠΎΠ·Π΄ΡΡ
ΠΎΠΌ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΠ§ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ,
ΠΠΠ, Π Π€ΠΠ‘ ΠΈ ΠΠΠ‘The process of copper (II) sulfate reduction by sodium borohydride with inorganic stabilizers (sodium
citrate, sodium nitrate, sodium aminoacetate, KCl, KClO3, KBr, KBrO3, KI, KIO3) was investigated. The
effect of reaction conditions (copper salt and sodium borohydride concentrations, their molar ratio,
pH, temperature) on the formation copper nanoparticles, its yield and stability in aqueous solution
were examined for system Cu2+-NaBH4-KIO3. The products were studied by UV-vis spectroscopy,
X-ray photoelectron spectroscopy, transmission electron microscop
Cyclo[18]carbon Formation from C(18)Br(6) and C18(CO)(6) Precursors
Although cyclo[18]carbon has been isolated experimentally from two precursors, C18Br6 and C-18(CO)(6), no reaction mechanisms have yet been explored. Herein, we provide insight into the mechanism behind debromination and decarbon-ylation. Both neutral precursors demonstrate high activation barriers of similar to 2.3 eV, while the application of an electric field can lower the barriers by 0.1-0.2 eV. The barrier energy of the anion-radicals is found to be significantly lower for C18Br6 compared to C-18(CO)(6), confirming a considerably higher yield of cylco[18] carbon when the C18Br6 precursor is used. Elongation of the C-Br bond in the anion-radical confirms its predissociation condition. Natural bonding orbital analysis shows that the stability of C-Br and C-CO bonds in the anion-radicals is lower compared to their neutral species, indicating a possible higher yield. The applied analysis provides crucial details regarding the reaction yield of cyclo[18]carbon and can serve as a general scheme for tuning reaction conditions for other organic precursors.Funding Agencies|Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0008]; Swedish Research Council [2020-04600, 2018-05973]; Swedish National Infrastructure for Computing at the National Supercomputer Centre of Linkoeping University [SNIC 2021-3-22, SNIC 2022-5-103]</p
The Synthesis of cobalt Oxlate (II) by Use Anion Exchanger AV-17-8 in Π‘2Π4 - form
ΠΠ·ΡΡΠ΅Π½ ΠΏΡΠΎΡΠ΅ΡΡ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΡ ΠΎΠΊΡΠ°Π»Π°ΡΠ° ΠΊΠΎΠ±Π°Π»ΡΡΠ° ΠΈΠ· ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠΎΠ»Π΅ΠΉ ΠΊΠΎΠ±Π°Π»ΡΡΠ° Ρ ΠΏΠΎΠΌΠΎΡΡΡ
ΡΠΈΠ»ΡΠ½ΠΎΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ Π°Π½ΠΈΠΎΠ½ΠΈΡΠ° ΠΠ-17-8 Π² Π‘2Π4 - ΡΠΎΡΠΌΠ΅. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠΉ Π²ΡΡ
ΠΎΠ΄
ΠΎΠΊΡΠ°Π»Π°ΡΠ° ΠΊΠΎΠ±Π°Π»ΡΡΠ° Π² Π²ΠΈΠ΄Π΅ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ°Π·Ρ (56 %) Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ Π² ΡΠ»ΡΡΠ°Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ
ΡΠ°ΡΡΠ²ΠΎΡΠ° ΡΡΠ»ΡΡΠ°ΡΠ° ΠΊΠΎΠ±Π°Π»ΡΡΠ°, ΠΈΠ· Π½ΠΈΡΡΠ°ΡΠ½ΡΡ
ΡΠ°ΡΡΠ²ΠΎΡΠΎΠ² Π²ΡΡ
ΠΎΠ΄ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 35 %. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΠΎΡΠ°Π΄ΠΊΠΎΠ² Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌ Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ, Π Π€Π, Π’ΠΠ ΠΈ ΠΠ-ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠ΅ΠΉ.
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉ ΠΏΡΠΎΠ΄ΡΠΊΡ Π½Π΅ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΡΡ
Π°Π½ΠΈΠΎΠ½ΠΎΠ² ΠΈ ΠΊΠ°ΡΠΈΠΎΠ½ΠΎΠ², Π΅Π³ΠΎ
ΡΠΎΡΡΠ°Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠΎΡΠΌΡΠ»Π΅ Π‘ΠΎΠ‘2Π4Β·2Π2Π, Π° ΡΡΡΡΠΊΡΡΡΠ° - ΠΎΡΡΠΎΡΠΎΠΌΠ±ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ
ΠΎΠΊΡΠ°Π»Π°ΡΠ° ΠΊΠΎΠ±Π°Π»ΡΡΠ° (II).The synthesis of cobalt oxalate (II) by use strong based anion resin AV-17-8 in Π‘2Π4 - form has been
investigated. Cobalt oxalate (II) was obtained in a yield (56 %) with sulfate solution as compared
with nitrate solutions (35 %). Synthesis products were investigated by chemical analysis, TGA, X-Ray
diffraction and IR-spectroscopy. The chemical composition of synthesized products is Π‘ΠΎΠ‘2Π4Β·Π2Π.
It is founded that all products correspond orthorhombic modification of cobalt oxalate (II) impurity
ions-free
Reaction-ion-exchange Techniques Recovery of Valuable Components from Mineral and Technogenic Raw Materials and Production of the Dispersed Substances
Π Π°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ Π΄Π²Π° ΡΠΎΠ²ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎ-ΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΡΡ
ΠΏΡΠΎΡΠ΅ΡΡΠ°, Π² ΠΊΠΎΡΠΎΡΡΡ
ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡΡΡ ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈΠΎΠ½ΠΈΡΡ: ΠΊΠ°ΡΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΎΠ΅ Π²ΡΡΠ΅Π»Π°ΡΠΈΠ²Π°Π½ΠΈΠ΅ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ²
ΠΈΠ· ΠΌΠΈΠ½Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈ ΡΠ΅Ρ
Π½ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΡΡΡΡΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΊΠ°ΡΠΈΠΎΠ½ΠΈΡΠ° Π² Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π½ΠΎΠΉ ΡΠΎΡΠΌΠ΅ ΠΈ
Π°Π½ΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΡ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² Π² Π²ΠΈΠ΄Π΅ ΠΌΠ°Π»ΠΎΡΠ°ΡΡΠ²ΠΎΡΠΈΠΌΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ
Π°Π½ΠΈΠΎΠ½ΠΈΡΠ° Π² Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ΄Π½ΠΎΠΉ ΠΈ ΡΠΎΠ»Π΅Π²ΡΡ
ΡΠΎΡΠΌΠ°Ρ
. ΠΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΈΠ»Π»ΡΡΡΡΠΈΡΡΡΡΡΡ
ΠΏΡΠΈΠΌΠ΅ΡΠ°ΠΌΠΈ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ², ΠΈΡΡ
ΠΎΠ΄Ρ ΠΈΠ· ΠΈΡ
ΠΎΠΊΡΠΈΠ΄ΠΎΠ², Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ΄ΠΎΠ², ΡΡΠ»ΡΡΠΈΠ΄ΠΎΠ², ΡΠΈΠ»ΠΈΠΊΠ°ΡΠΎΠ², Π°
ΡΠ°ΠΊΠΆΠ΅ ΡΠΈΠ½ΡΠ΅Π·Π° Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ΄ΠΎΠ², ΠΊΠ°ΡΠ±ΠΎΠ½Π°ΡΠΎΠ², ΠΎΠΊΡΠ°Π»Π°ΡΠΎΠ² Π½ΠΈΠΊΠ΅Π»Ρ, ΠΊΠΎΠ±Π°Π»ΡΡΠ° ΠΈ Π΄ΡΡΠ³ΠΈΡ
ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ²Two different techniques of integrated ion exchange technology processes were researched.
The first is recovery of metals from mineral raw materials, intermediate substances and waste
products by cation exchange resins in H-form. The second is synthesis of dispersed materials
utilizing anion exchange resins in OH-, CO3- , C2O4-forms. The constants of dissolution (leaching)
and precipitation using ion exchange resin were determined. These techniques advantages
before traditional leaching and precipitation methods are discussed. Application of methods
is illustrated by cases of metal separation from its oxides, hydroxides, sulfides, silicates and
synthesis different dispersed materials: cobalt and nickel hydroxides, oxalates, base carbonates
and others. Mechanism of these processes and different factors influence on the processes are
discusse
The Synthesis of cobalt Oxlate (II) by Use Anion Exchanger AV-17-8 in Π‘2Π4 - form
ΠΠ·ΡΡΠ΅Π½ ΠΏΡΠΎΡΠ΅ΡΡ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΡ ΠΎΠΊΡΠ°Π»Π°ΡΠ° ΠΊΠΎΠ±Π°Π»ΡΡΠ° ΠΈΠ· ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠΎΠ»Π΅ΠΉ ΠΊΠΎΠ±Π°Π»ΡΡΠ° Ρ ΠΏΠΎΠΌΠΎΡΡΡ
ΡΠΈΠ»ΡΠ½ΠΎΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ Π°Π½ΠΈΠΎΠ½ΠΈΡΠ° ΠΠ-17-8 Π² Π‘2Π4 - ΡΠΎΡΠΌΠ΅. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠΉ Π²ΡΡ
ΠΎΠ΄
ΠΎΠΊΡΠ°Π»Π°ΡΠ° ΠΊΠΎΠ±Π°Π»ΡΡΠ° Π² Π²ΠΈΠ΄Π΅ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ°Π·Ρ (56 %) Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ Π² ΡΠ»ΡΡΠ°Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ
ΡΠ°ΡΡΠ²ΠΎΡΠ° ΡΡΠ»ΡΡΠ°ΡΠ° ΠΊΠΎΠ±Π°Π»ΡΡΠ°, ΠΈΠ· Π½ΠΈΡΡΠ°ΡΠ½ΡΡ
ΡΠ°ΡΡΠ²ΠΎΡΠΎΠ² Π²ΡΡ
ΠΎΠ΄ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 35 %. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΠΎΡΠ°Π΄ΠΊΠΎΠ² Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌ Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ, Π Π€Π, Π’ΠΠ ΠΈ ΠΠ-ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠ΅ΠΉ.
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉ ΠΏΡΠΎΠ΄ΡΠΊΡ Π½Π΅ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΡΡ
Π°Π½ΠΈΠΎΠ½ΠΎΠ² ΠΈ ΠΊΠ°ΡΠΈΠΎΠ½ΠΎΠ², Π΅Π³ΠΎ
ΡΠΎΡΡΠ°Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠΎΡΠΌΡΠ»Π΅ Π‘ΠΎΠ‘2Π4Β·2Π2Π, Π° ΡΡΡΡΠΊΡΡΡΠ° - ΠΎΡΡΠΎΡΠΎΠΌΠ±ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ
ΠΎΠΊΡΠ°Π»Π°ΡΠ° ΠΊΠΎΠ±Π°Π»ΡΡΠ° (II).The synthesis of cobalt oxalate (II) by use strong based anion resin AV-17-8 in Π‘2Π4 - form has been
investigated. Cobalt oxalate (II) was obtained in a yield (56 %) with sulfate solution as compared
with nitrate solutions (35 %). Synthesis products were investigated by chemical analysis, TGA, X-Ray
diffraction and IR-spectroscopy. The chemical composition of synthesized products is Π‘ΠΎΠ‘2Π4Β·Π2Π.
It is founded that all products correspond orthorhombic modification of cobalt oxalate (II) impurity
ions-free
Electronic structure and theoretical exfoliation of non-van der Waals carbonates into low-dimensional materials : A case of Y2(CO3)3
The unique properties of two-dimensional (2D) materials make them highly versatile for a wide range of applications. Recently, low-dimensional structures obtained from bulk non-van der Waals materials have received particular interest. Yttrium carbonate is an example of such materials which hold the potential for creating 2D structures, however, its fundamental properties have been investigated only rarely. In this work, we demonstrate the possibility of obtaining 2D yttrium carbonate with the tengerite-(Y) structure. The electronic and optical properties of both bulk and two-dimensional Y2(CO3)3 & sdot;2H2O 2 (CO 3 ) 3 & sdot; 2H 2 O are investigated using the PBE and HSE06 functionals. While the bulk material is predicted with a bandgap of 7.06 eV at the HSE06 level, the 2D Y2(CO3)3 & sdot;2H2O 2 (CO 3 ) 3 & sdot; 2H 2 O material possesses a bandgap of, untypically, 0.4 eV narrower than the bulk material due to surface effects and different stoichiometry. The optical properties reveal that both the bulk and 2D forms are transparent in the visible and near-UV regions positioning them as promising candidates for various optical applications including doping-induced luminescent devices